Publications by authors named "Clare E Aslan"

Pollinator losses threaten ecosystems and food security, diminishing gene flow and reproductive output for ecological communities and impacting ecosystem services broadly. For four focal families of bees and butterflies, we constructed over 1400 ensemble species distribution models over two time periods for North America. Models indicated disproportionally increased richness in eastern North America over time, with decreases in richness over time in the western US and southern Mexico.

View Article and Find Full Text PDF

Disruption of plant-pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai'i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax).

View Article and Find Full Text PDF

Bees experience differences in thermal tolerance based on their geographical range; however, there are virtually no studies that examine how overwintering temperatures may influence immature survival rates. Here, we conducted a transplant experiment along an elevation gradient to test for climate-change effects on immature overwinter survival using movement along elevational gradient for a community of 26 cavity-nesting bee species in the family Megachilidae along the San Francisco Peaks, Arizona elevational gradient. In each of three years, we placed nest blocks at three elevations, to be colonized by native Megachilidae.

View Article and Find Full Text PDF

Resilience quantifies the ability of a system to remain in or return to its current state following disturbance. Due to inconsistent terminology and usage of resilience frameworks, quantitative resilience studies are challenging, and resilience is often treated as an abstract concept rather than a measurable system characteristic. We used a novel, spatially explicit stakeholder engagement process to quantify social-ecological resilience to fire, in light of modeled social-ecological fire risk, across the non-fire-adapted Sonoran Desert Ecosystem in Arizona, USA.

View Article and Find Full Text PDF

As a multi-jurisdictional, non-fire-adapted region, the Sonoran Desert Ecoregion is a complex, social-ecological system faced increasingly with no-analogue conditions. A diversity of management objectives and activities form the socioecological landscape of fire management. Different managers have different objectives, resources, and constraints, and each therefore applies different activities.

View Article and Find Full Text PDF
Article Synopsis
  • Dispersal is important for plants, but we still don’t fully understand how it affects their survival and spread.
  • It’s tough to predict how seeds move around because it depends on many different factors like the environment and time.
  • To really get better at studying seed dispersal, we need to consider all the different ways plants grow and change over time, and work together across different fields of science.
View Article and Find Full Text PDF

Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal.

View Article and Find Full Text PDF

Resilience theory aims to understand and predict ecosystem state changes resulting from disturbances. Non-native species are ubiquitous in ecological communities and integrated into many described ecological interaction networks, including mutualisms. By altering the fitness landscape and rewiring species interactions, such network invasion may carry important implications for ecosystem resistance and resilience under continued environmental change.

View Article and Find Full Text PDF

Premise Of The Study: Over one-third of the native flowering plant species in the Hawaiian Islands are listed as federally threatened or endangered. Lack of sufficient pollination could contribute to reductions in populations, reproduction, and genetic diversity among these species but has been little studied.

Methods: We used systematic observations and manual flower treatments to quantify flower visitation and outcrossing dependency of eight native (including four endangered) plant species in a dryland ecosystem in Hawaii: Argemone glauca, Bidens menziesii, Dubautia linearis, Haplostachys haplostachya, Sida fallax, Silene lanceolata, Stenogyne angustifolia, and Tetramolopium arenarium.

View Article and Find Full Text PDF

Changes in fire frequency, size, and severity are driving ecological transformations in many systems. In arid and semi-arid regions that are adapted to fire, long-term fire exclusion by managers leads to declines in fire frequency, altered fire size distribution, and increased proportion of high severity fires. In arid and semi-arid systems where fire was historically rare, factors such as invasion by highly combustible non-native plants elevate fire frequency and size, elevating mortality of native species.

View Article and Find Full Text PDF

Extinctions beget further extinctions when species lose obligate mutualists, predators, prey, or hosts. Here, we develop a conceptual model of species and community attributes affecting secondary extinction likelihood, incorporating mechanisms that buffer organisms against partner loss. Specialized interactors, including 'cryptic specialists' with diverse but nonredundant partner assemblages, incur elevated risk.

View Article and Find Full Text PDF

Native plant species that have lost their mutualist partners may require non-native pollinators or seed dispersers to maintain reproduction. When natives are highly specialized, however, it appears doubtful that introduced generalists will partner effectively with them. We used visitation observations and pollination treatments (experimental manipulations of pollen transfer) to examine relationships between the introduced, generalist Japanese White-eye (Zosterops japonicus) and 3 endemic Hawaiian plant species (Clermontia parviflora, C.

View Article and Find Full Text PDF

Conservation practitioners and scientists are often faced with seemingly intractable problems in which traditional approaches fail. While other sectors (e.g.

View Article and Find Full Text PDF

Background: As global environmental change accelerates, biodiversity losses can disrupt interspecific interactions. Extinctions of mutualist partners can create "widow" species, which may face reduced ecological fitness. Hypothetically, such mutualism disruptions could have cascading effects on biodiversity by causing additional species coextinctions.

View Article and Find Full Text PDF

Extinctions can leave species without mutualist partners and thus potentially reduce their fitness. In cases where non-native species function as mutualists, mutualism disruption associated with species' extinction may be mitigated. To assess the effectiveness of mutualist species with different origins, we conducted a meta-analysis in which we compared the effectiveness of pollination and seed-dispersal functions of native and non-native vertebrates.

View Article and Find Full Text PDF

Introduced species have the potential to impact processes central to the organization of ecological communities. Although hundreds of nonnative plant species have naturalized in the United States, only a small percentage of these have been studied in their new biotic communities. Their interactions with resident (native and introduced) bird species remain largely unexplored.

View Article and Find Full Text PDF