Extracellular vesicles have been described in non-paracrine cellular interactions in cancer. We report a similar phenomenon in B-cell precursor (BCP) acute lymphoblastic leukaemia (ALL). Using advanced microscopy and high throughput screening, we further characterise a subset of large vesicles (LEVs) identified in cell lines, murine models of human BCP-ALL and clinical samples.
View Article and Find Full Text PDFOutcome in childhood acute lymphoblastic leukemia is prognosticated from levels of minimal residual disease after remission induction therapy. Higher levels of minimal residual disease are associated with inferior results even with intensification of therapy, thus suggesting that identification and targeting of minimal residual disease cells could be a therapeutic strategy. Here we identify high expression of 5T4 in subclonal populations of patient-derived xenografts from patients with high, post-induction levels of minimal residual disease.
View Article and Find Full Text PDFDespite the high cure rates in childhood acute lymphoblastic leukemia (ALL), relapsed ALL remains a significant clinical problem. Genetic heterogeneity does not adequately explain variations in response to therapy. The chemoprotective tumor microenvironment may additionally contribute to disease recurrence.
View Article and Find Full Text PDFWe developed a murine model of CNS disease to obtain a better understanding of the pathogenesis of CNS involvement in pre-B-cell acute lymphoblastic leukemia (ALL). Semiquantitative proteomic discovery-based approaches identified unique expression of asparaginyl endopeptidase (AEP), intercellular adhesion molecule 1 (ICAM1), and ras-related C3 botulinum toxin substrate 2 (RAC2), among others, in an invasive pre-B-cell line that produced CNS leukemia in NOD-SCID mice. Targeting RAC2 significantly inhibited in vitro invasion and delayed disease onset in mice.
View Article and Find Full Text PDFSolid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia.
View Article and Find Full Text PDFl-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative.
View Article and Find Full Text PDFReduced expression of pro-apoptotic Bcl-2 family proteins has been described in many gastrointestinal cancers, and may play a role in tumourigenesis. The human homologue of the pro-apoptotic Bcl-2 protein, Bfk, is predominantly expressed in tissues of the gastrointestinal tract. In colon, four alternatively spliced isoforms were identified; of which two are pro-apoptotic when overexpressed.
View Article and Find Full Text PDFControl of mitogen-activated protein kinase (MAPK) cascades is central to regulation of many cellular responses. We describe here human tribbles homologues (Htrbs) that control MAPK activity. MAPK kinases interact with Trbs and regulate their steady state levels.
View Article and Find Full Text PDFBid, a BH3-only Bcl-2 protein, is activated by proteolytic cleavage exposing the BH3 domain, which then induces apoptosis by interacting with pro-apoptotic Bcl-2 family proteins (e.g. Bax and Bak) at the mitochondrial surface.
View Article and Find Full Text PDF