Publications by authors named "Clara Woods"

Hsp70 prevents protein aggregation and is cytoprotective, but sustained Hsp70 overexpression is problematic. Therefore, we characterized small molecule agonists that augment Hsp70 activity. Because cumbersome assays were required to assay agonists, we developed cell-based and in vivo assays in which disease-associated consequences of Hsp70 activation can be quantified.

View Article and Find Full Text PDF

There is evidence that tumor necrosis factor alpha (TNFα) influences autonomic processes coordinated within the hypothalamic paraventricular nucleus (PVN), however, the signaling mechanisms subserving TNFα's actions in this brain area are unclear. In non-neuronal cell types, TNFα has been shown to play an important role in canonical NADPH oxidase (NOX2)-mediated production of reactive oxygen species (ROS), molecules also known to be critically involved in hypertension. However, little is known about the role of TNFα in NOX2-dependent ROS production in the PVN within the context of hypertension.

View Article and Find Full Text PDF

Sex differences in the sensitivity to hypertension and inflammatory processes are well characterized but insufficiently understood. In male mice, tumor necrosis factor alpha (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension following slow-pressor angiotensin II (AngII) infusion. However, the role of PVN TNFα in the response to AngII in female mice is unknown.

View Article and Find Full Text PDF

The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking.

View Article and Find Full Text PDF

Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause.

View Article and Find Full Text PDF

There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control.

View Article and Find Full Text PDF

No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this.

View Article and Find Full Text PDF

At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI.

View Article and Find Full Text PDF