Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy.
View Article and Find Full Text PDFMetastatic colorectal cancer (CRC) is complex clinical challenge for which there are limited treatment options. Chemotherapy with or without surgery provides moderate improvements in overall survival and quality of life; nevertheless the 5-year survival remains below 30%. Oncolytic vaccinia virus (VV) shows strong anti-tumour activity in models of CRC, however transient delays in disease progression are insufficient to lead to long-term survival.
View Article and Find Full Text PDFAttenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses.
View Article and Find Full Text PDF