Publications by authors named "Clara Schmidt"

Diabetic cardiomyopathy (DCM) represents a distinct form of heart disease characterized by structural and functional alterations in the myocardium, occurring in the absence of other cardiac conditions. This review delves into the pathophysiological mechanisms underlying myocardial fibrosis in DCM, highlighting the pivotal role of fibroblast transdifferentiation into myofibroblasts. We examine the interplay between hyperglycemia, immune cell activation, and neurohumoral signaling pathways, with a particular focus on the transforming growth factor-beta (TGF-β) signaling cascade and its contributions to collagen deposition and cardiac dysfunction.

View Article and Find Full Text PDF

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal.

View Article and Find Full Text PDF

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity.

View Article and Find Full Text PDF

Sponges (Porifera) represent one of the most basally branching animal clades with key relevance for evolutionary studies, stem cell biology, and development. Despite a long history of sponges as experimental model systems, however, functional molecular studies are still very difficult to perform in these animals. Here, we report the establishment of transgenic technology as a basic and versatile experimental tool for sponge research.

View Article and Find Full Text PDF