Background: The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications.
View Article and Find Full Text PDFThe interactions between two oxidoreductases coupled by an artificial redox mediator have been described quantitatively to increase both stability and productivity. In this cascade oxidation, pyranose 2-oxidase oxidizes several aldoses at the C-2 position to 2-ketoaldoses. A redox mediator is used as electron acceptor for pyranose 2-oxidase because it shows more favourable kinetics in comparison to oxygen.
View Article and Find Full Text PDFD-Tagatose is a sweetener with low caloric and non-glycemic characteristics. It can be produced by an enzymatic oxidation of D-galactose specifically at C2 followed by chemical hydrogenation. Pyranose 2-oxidase (P2Ox) from Trametes multicolor catalyzes the oxidation of many aldopyranoses to their corresponding 2-keto derivatives.
View Article and Find Full Text PDFIn order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 172], the variant oxidizes both sugars equally well [(k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 0.69], which is of interest for food biotechnology.
View Article and Find Full Text PDFThe fungal homotetrameric flavoprotein pyranose 2-oxidase (P2Ox; EC 1.1.3.
View Article and Find Full Text PDF