Accurate classification of pancreatic cystic lesions (PCLs) is important to facilitate proper treatment and to improve patient outcomes. We utilized the convolutional neural network (CNN) of VGG19 to develop a computer-aided diagnosis (CAD) system in the classification of subtypes of PCLs in endoscopic ultrasound-guided needle-based confocal laser endomicroscopy (nCLE). From a retrospectively collected 22,424 nCLE video frames (50 videos) as the training/validation set and 11,047 nCLE video frames (18 videos) as the test set, we developed and compared the diagnostic performance of three CNNs with distinct methods of designating the region of interest.
View Article and Find Full Text PDF