The 2017 Atlantic Hurricane Season was one of the most active and destructive on record, leading to significant flooding in many parts of the United States and the Caribbean. During flooding events such as these, there is an urgent need to quickly map in detail which areas have been severely affected, yet current satellite missions are not capable of sampling the global land surface at high enough spatio-temporal scales for flooding applications. Here, we demonstrate a novel approach to high-resolution flood mapping by repurposing data from the new NASA mission, CYGNSS.
View Article and Find Full Text PDFA constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface.
View Article and Find Full Text PDFInformation about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities.
View Article and Find Full Text PDF