Publications by authors named "Clara Bueno"

The CRISPR/Cas9 system has transformed genome editing by enabling precise modifications for diverse applications. Recent advancements, including base editing and prime editing, have expanded its utility beyond conventional gene knock-out and knock-in strategies. Additionally, several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains have been developed to modulate endogenous gene expression when directed to their regulatory regions by specific single-guide RNAs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the diversity of chimeric antigen receptor (CAR)-T cells affects clinical outcomes in treating B cell acute lymphoblastic leukemia (B-ALL).
  • Researchers analyzed clonal dynamics and gene expression using single-cell techniques in patients receiving CD19CAR-T cells, revealing notable differences in how these T cells behave during treatment.
  • Key findings include a higher CD4:CD8 ratio in successful patients' T cells at infusion and an expansion of cytotoxic T cells linked to better treatment responses across different patient cohorts.
View Article and Find Full Text PDF
Article Synopsis
  • Humanized immunodeficient mice are important for studying how transplanted human cells interact with a human immune system, helping to improve immunotherapy development.
  • Current methods for reconstituting the immune system using CD34+ cells or peripheral blood often lead to issues like high rates of graft-versus-host disease and poor immune cell representation.
  • This study found that using cord blood mononuclear cells in a specific mouse model allows for better immune reconstitution with less GvHD, leading to effective anti-cancer responses and a promising approach for cancer immunotherapy.
View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome.

View Article and Find Full Text PDF

Background: Acute leukemia is the most common pediatric cancer, with an incidence peak at 2-5 years of age. Despite the medical advances improving survival rates, children suffer from significant side effects of treatments as well as its high social and economic impact. The frequent prenatal origin of this developmental disease follows the two-hit carcinogenesis model established in the 70s: a first hit in prenatal life with the creation of genetic fusion lesions or aneuploidy in hematopoietic progenitor/stem cells, and usually a second hit in the pediatric age that converts the preleukemic clone into clinical leukemia.

View Article and Find Full Text PDF

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy.

View Article and Find Full Text PDF

Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX).

View Article and Find Full Text PDF
Article Synopsis
  • Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children, with over 85% surviving, though 15% may relapse and face worse outcomes.
  • To address the challenges of relapsed or refractory ALL (R/R ALL), the Relapsed ALL Network (ReALLNet) was established in 2021, connecting healthcare providers and expert groups to enhance patient care through research.
  • ReALLNet aims to create a comprehensive system for collecting biological data and patient outcomes, while also storing patient samples in a biobank, to support advances in precision medicine for children with R/R ALL.
View Article and Find Full Text PDF

Cellular ontogeny and MLL breakpoint site influence the capacity of MLL-edited CD34+ hematopoietic cells to initiate and recapitulate infant patients' features in pro-B-cell acute lymphoblastic leukemia (B-ALL). We provide key insights into the leukemogenic determinants of MLL-AF4+ infant B-ALL.

View Article and Find Full Text PDF

Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples.

View Article and Find Full Text PDF

Plant growth-promoting endophytic microorganisms in agriculture have been expanding in Brazil and are an excellent strategy to face the challenges of current agriculture, such as reducing production costs with fewer environmental impacts, without detriment to productivity. However, little is known about the factors that can affect the colonization of endophytic such as inoculant concentration and mineral fertilization. The present study aimed to evaluate the influence of these factors on soybean and maize crops and found that for soybean crops, the highest concentration of 1 × 10 and 1 × 10 CFU ml promoted the highest number of recovered bacteria, when there was no mineral fertilization.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the commonest childhood cancer. High hyperdiploidy (HHD) identifies the most frequent cytogenetic subgroup in childhood B-ALL. Although hyperdiploidy represents an important prognostic factor in childhood B-ALL, the specific chromosome gains with prognostic value in HHD-B-ALL remain controversial, and the current knowledge about the hierarchy of chromosome gains, clonal heterogeneity and chromosomal instability in HHD-B-ALL remains very limited.

View Article and Find Full Text PDF

Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs.

View Article and Find Full Text PDF

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Patients with AML harboring a constitutively active internal tandem duplication mutation (ITD) in the FMS-like kinase tyrosine kinase (FLT3) receptor generally have a poor prognosis. Several tyrosine kinase/FLT3 inhibitors have been developed and tested clinically, but very few (midostaurin and gilteritinib) have thus far been FDA/EMA-approved for patients with newly diagnosed or relapse/refractory FLT3-ITD AML.

View Article and Find Full Text PDF

CD19-directed chimeric antigen receptor (CAR) T cells have yielded impressive response rates in refractory/relapse B cell acute lymphoblastic leukemia (B-ALL); however, most patients ultimately relapse due to poor CAR T cell persistence or resistance of either CD19 or CD19 B-ALL clones. CD22 is a pan-B marker whose expression is maintained in both CD19 and CD19 relapses. CD22-CAR T cells have been clinically used in B-ALL patients, although relapse also occurs.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Disease heterogeneity is well documented, and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) from risk-stratified AML are crucial for studying AML biology and testing novel therapeutics.

View Article and Find Full Text PDF

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA () binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro.

View Article and Find Full Text PDF

The generation of transplantable hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) remains challenging. Current differentiation protocols from hPSCs generate mostly hematopoietic progenitors of the primitive HSC-independent program, and it remains unclear what is the best combination of cytokines and hematopoietic growth factors (HGFs) for obtaining functional hematopoietic cells . Here, we have used the AND1 and H9 hESC lines and the H9:dual-reporter -GFP--Cherry to compare the hematopoietic differentiation based on the treatment of embryoid bodies (EBs) with the ventral mesoderm inducer BMP4 plus HGFs in the absence (protocol 1) or presence (protocol 2) of stage-specific activation of Wnt/β-catenin and inhibition of Activin/Nodal.

View Article and Find Full Text PDF