Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer and constitutes 10-20% of all breast cancer cases. Even though platinum-based drugs such as cisplatin and carboplatin are effective in TNBC patients, their toxicity and development of cancer drug resistance often hamper their clinical use. Hence, novel drug entities with improved tolerability and selectivity profiles, as well as the ability to surpass resistance, are needed.
View Article and Find Full Text PDFA dinuclear Pt(II) complex with putrescine as bridging polyamine ligand ([PtPut(NH)]Cl) was synthesized and assessed as to its potential anticancer activity against a human non-small cell lung cancer line (A549), as well as towards non-cancer cells (BEAS-2B). This effect was evaluated through in vitro cytotoxicity assays (MTT and SRB) coupled to microFTIR and microRaman spectroscopies, the former delivering information on growth-inhibiting and cytotoxic abilities while the latter provided very specific information on the metabolic impact of the metal agent (at the sub-cellular level). Regarding cancer cells, a major impact of [PtPut(NH)]Cl was evidenced on cellular proteins and lipids, as compared to DNA, particularly via the Amide I and Amide II signals.
View Article and Find Full Text PDFRegarding the development of new antineoplastic agents, with a view to assess the selective antitumoral potential which aims at causing irreversible damage to cancer cells while preserving the integrity of their healthy counterparts, it is essential to evaluate the cytotoxic effects in both healthy and malignant human cell lines. In this study, a complex with two Pd(II) centers linked by the biogenic polyamine spermine (PdSpm) was tested on healthy (PNT-2) and cancer (LNCaP and PC-3) prostate human cell lines, using cisplatin as a reference. To understand the mechanisms of action of both cisplatin and PdSpm at a molecular level, Fourier Transform Infrared (FTIR) and Raman microspectroscopies were used.
View Article and Find Full Text PDFLipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project.
View Article and Find Full Text PDFPalladium-based compounds are regarded as potential analogs to platinum anticancer drugs with improved properties. The present study assessed the pharmacokinetics and biodistribution of a dinuclear palladium(II)-spermine chelate (PdSpm), which has previously been shown to possess promising in vitro activity against several therapy-resistant cancers. Using inductively coupled plasma-mass spectrometry, the kinetic profiles of palladium/platinum in serum, serum ultrafiltrate and tissues (kidney, liver, brain, heart, lungs, ovaries, adipose tissue and mammary glands) were studied in healthy female Balb/c mice after a single intraperitoneal bolus injection of PdSpm (3 mg/kg bw) or cisplatin (3.
View Article and Find Full Text PDFA metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols.
View Article and Find Full Text PDFBacterial biofilms are complex biological systems that are difficult to eradicate at a medical, industrial, or environmental level. Biofilms confer bacteria protection against external factors and antimicrobial treatments. Taking into account that about 80% of human infections are caused by bacterial biofilms, the eradication of these structures is a great priority.
View Article and Find Full Text PDF