Publications by authors named "Clara Amorim"

Acoustic communication is linked to fitness traits in many animals, but under the current scenario of global warming, sound signals can be affected by rising temperatures, particularly in ectothermic organisms such as fishes. This study examines the effect of water temperature in acoustic communication in the two-spotted goby, Pomatoschistus flavescens. To address this, we looked at the effect of different temperatures on the acoustic features of drums produced by males during territorial defence and related it with their auditory sensitivity.

View Article and Find Full Text PDF

Marine ecosystems are increasingly subjected to anthropogenic pressures, which demands urgent monitoring plans. Understanding soundscapes can offer unique insights into the ocean status providing important information and revealing different sounds and their sources. Fishes can be prominent soundscape contributors, making passive acoustic monitoring (PAM) a potential tool to detect the presence of vocal fish species and to monitor changes in biodiversity.

View Article and Find Full Text PDF

Fish bioacoustics, or the study of fish hearing, sound production, and acoustic communication, was discussed as early as Aristotle. However, questions about how fishes hear were not really addressed until the early 20th century. Work on fish bioacoustics grew after World War II and considerably in the 21st century since investigators, regulators, and others realized that anthropogenic (human-generated sounds), which had primarily been of interest to workers on marine mammals, was likely to have a major impact on fishes (as well as on aquatic invertebrates).

View Article and Find Full Text PDF

Danionella cerebrum has recently been proposed as a promising model to investigate the structure and function of the adult vertebrate brain, including the development of vocal-auditory neural pathways. This genetically tractable and transparent cypriniform is highly vocal, but limited information is available on its acoustic behavior and underlying biological function. Our main goal was to characterize the acoustic repertoire and diel variation in sound production of D.

View Article and Find Full Text PDF

This paper outlines my research path over three decades while providing a review on the role of fish sounds in mate choice and reproduction. It also intends to provide advice to young scientists and point toward future avenues in this field of research. An overview of studies on different fish model species shows that male mating acoustic signals can inform females and male competitors about their size (dominant frequency, amplitude, and sound pulse rate modulation), body condition (calling activity and sound pulse rate), and readiness to mate (calling rate, number of pulses in a sound).

View Article and Find Full Text PDF

Acoustic signals in teleost fishes play a fundamental role in reproduction. As fish are ectothermic animals, temperature has the potential to change their signal production and detection, with further implications for mating interactions. In this study, we describe the mating sounds made by the two-spotted goby, Pomatoschistus flavescens, for the first time and further investigate the effect of temperature on the acoustic features.

View Article and Find Full Text PDF

Fish are ectothermic and small changes in water temperature could greatly affect reproduction. The two-spotted goby is a small semi-pelagic species that uses visual and acoustic displays to mate. Here, we studied the effect of temperature (16 and 20 °C) on acoustic and visual courtship and associated reproductive success in 39 males.

View Article and Find Full Text PDF
Article Synopsis
  • * The weakfish poses a potential threat to native species, particularly the meagre, Argyrosomus regius, due to their similar feeding habits and reproduction behaviors.
  • * Research indicates that weakfish and native sciaenids produce different sounds, which can be easily distinguished, suggesting that acoustic monitoring could effectively track weakfish populations and their spread beyond their native habitat.
View Article and Find Full Text PDF

The growth of human populations has been driving an unprecedent and widespread increase in marine traffic, posing a real threat to marine biodiversity. Even though we are now aware of the negative effects of shipping noise exposure on fish, information about the impact on their early life stages continues to lack. Meagre (Argyrosomus regius) is a vocal fish that uses estuaries with high levels of anthropogenic noise pollution as both breeding areas and nurseries.

View Article and Find Full Text PDF

Anthropogenic noise is a growing threat to marine organisms, including fish. Yet very few studies have addressed the impact of anthropogenic noise on fish reproduction, especially in situ. In this study, we investigated the impacts of boat noise exposure in the reproductive success of wild Lusitanian toadfish (Halobatrachus didactylus), a species that relies on advertisement calls for mate attraction, using behavioural, physiological and reproductive endpoints.

View Article and Find Full Text PDF

Passive acoustic monitoring is a valuable tool for non-intrusive monitoring of marine environments, also allowing the assessment of underwater noise that can negatively affect marine organisms. Here we provide for the first time, an assessment of noise levels and temporal soundscape patterns for a European estuary. We used several eco-acoustics methodologies to characterize the data collected over six weeks within May 2016 - July 2017 from Tagus estuary.

View Article and Find Full Text PDF

Aquatic noise has increased in last decades imposing new constraints on aquatic animals' acoustic communication. Meagre (Argyrosomus regius) produce loud choruses during the breeding season, likely facilitating aggregations and mating, and are thus amenable to being impacted by anthropogenic noise. We assessed the impact of boat noise on this species acoustic communication by: evaluating possible masking effects of boat noise on hearing using Auditory Evoked Potentials (AEP) and inspecting changes in chorus sound levels from free ranging fish upon boat passages.

View Article and Find Full Text PDF

Anthropogenic noise is considered a major underwater pollutant as increasing ocean background noise due to human activities is impacting aquatic organisms. One of the most prevalent anthropogenic sounds is boat noise. Although motorboat traffic has increased in the past few decades, its impact on the communication of fish is still poorly known.

View Article and Find Full Text PDF

Passive Acoustic Monitoring (PAM) is a non-intrusive and cost-effective method capable of providing high-resolution, long-term information on the status and health of vocal populations and communities. To successfully monitor the same species over wide geographical and temporal scales, it is necessary to characterise the range of sound variability, as well as the consistency of sound features between populations. The meagre (Argyrosomus regius, Asso 1801) is an interesting case study because recent investigations suggest a wider vocal repertoire than previously described.

View Article and Find Full Text PDF

Information transfer between individuals typically depends on multiple sensory channels. Yet, how multi-sensory inputs shape adaptive behavioural decisions remains largely unexplored. We tested the relative importance of audio and visual sensory modalities in opponent size assessment in the vocal cichlid fish, , by playing back mismatched agonistic sounds mimicking larger or smaller opponents during fights of size-matched males.

View Article and Find Full Text PDF

Anthropogenic underwater noise is a global pollutant of increasing concern but its impact on reproduction in fish is largely unknown. Hence, a better understanding of its consequences for this important link to fitness is crucial. Working in aquaria, we experimentally tested the impact of broadband noise exposure (added either continuously or intermittently), compared to a control, on the behaviour and reproductive success of the common goby (Pomatoschistus microps), a vocal fish with exclusive paternal care.

View Article and Find Full Text PDF

The Acoustic Complexity Index (ACI) is increasingly applied to the study of biodiversity in aquatic habitats. However, it remains unknown which types of acoustic information are highlighted by this index in underwater environments. This study explored the robustness of the ACI to fine variations in fish sound abundance (i.

View Article and Find Full Text PDF

There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically.

View Article and Find Full Text PDF

Communication is essential during social interactions including animal conflicts and it is often a complex process involving multiple sensory channels or modalities. To better understand how different modalities interact during communication, it is fundamental to study the behavioural responses to both the composite multimodal signal and each unimodal component with adequate experimental protocols. Here we test how an African cichlid, which communicates with multiple senses, responds to different sensory stimuli in a social relevant scenario.

View Article and Find Full Text PDF

Studies addressing structure-function relationships of the fish auditory system during development are sparse compared to other taxa. The Batrachoididae has become an important group to investigate mechanisms of auditory plasticity and evolution of auditory-vocal systems. A recent study reported ontogenetic improvements in the inner ear saccule sensitivity of the Lusitanian toadfish, Halobatrachus didactylus, but whether this results from changes in the sensory morphology remains unknown.

View Article and Find Full Text PDF

Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase.

View Article and Find Full Text PDF

Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology.

View Article and Find Full Text PDF

The active space of a signal is an important concept in acoustic communication as it has implications for the function and evolution of acoustic signals. However, it remains mostly unknown for fish as it has been measured in only a restricted number of species. We combined physiological and sound propagation approaches to estimate the communication range of the Lusitanian toadfish's ( ITALIC! Halobatrachus didactylus) advertisement sound, the boatwhistle (BW).

View Article and Find Full Text PDF