The quiescent state is the prevalent mode of cellular life in most cells. is a useful model for studying the molecular basis of the cell cycle, quiescence, and aging. Previous studies indicate that heterogeneous ribosomes show a specialized translation function to adjust the cellular proteome upon a specific stimulus.
View Article and Find Full Text PDFGlycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2021
Low complexity regions are involved in the assembly and disassembly of P-bodies (PBs). Saccharomyces cerevisiae contains three genes encoding the protein kinase A (PKA) catalytic subunit: TPK1, TPK2 and TPK3. Tpk2 and Tpk3 isoforms localize to PBs upon glucose starvation showing different mechanisms and kinetics of accumulation.
View Article and Find Full Text PDFmRNA localization serves key functions in localized protein production, making it critical that the translation machinery itself is present at these locations. Here we show that translation factor mRNAs are localized to distinct granules within yeast cells. In contrast to many messenger RNP granules, such as processing bodies and stress granules, which contain translationally repressed mRNAs, these granules harbor translated mRNAs under active growth conditions.
View Article and Find Full Text PDFCellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response.
View Article and Find Full Text PDFPKA (cAMP-dependent protein kinase) activity, as well as that of other AGC members, is regulated by multiple phosphorylations of its catalytic subunits. In Saccharomyces cerevisiae, the PKA regulatory subunit is encoded by the gene BCY1, and the catalytic subunits are encoded by three genes: TPK1, TPK2 and TPK3. Previously, we have reported that, following cAMP/PKA pathway activation, Tpk1 increases its phosphorylation status.
View Article and Find Full Text PDF