Patients with Parkinson's disease often complain of excessive daytime sleepiness which negatively impacts their quality of life. The pedunculopontine nucleus, proposed as a target for deep brain stimulation to improve freezing of gait in Parkinson's disease, is also known to play a key role in the arousal system. Thus, the putative control of excessive daytime sleepiness by pedunculopontine nucleus area stimulation merits exploration for treating Parkinson's disease patients.
View Article and Find Full Text PDFIn the preceding chapter, we introduced bioluminescence-optogenetics (BL-OG) and luminopsin fusion proteins (LMOs), an emerging method of molecular neuromodulation. In addition to reviewing the fundamental principles of BL-OG, we provided a discussion of its application in vitro, including with cell lines and primary cells in culture in vitro. BL-OG is mediated by an easily diffusible molecule, luciferin, and when applied systemically in rodents, the substrate can spread throughout the body, including the brain, achieving powerful molecular neuromodulation with convenience even in awake and behaving animals.
View Article and Find Full Text PDFManipulation of neural activity in genetically predefined populations of neurons through genetic techniques is an essential tool in the field of neuroscience as well as a potential avenue in treating a vast assortment of neurological and psychiatric diseases. Here, we describe an emerging methodology of molecular neuromodulation termed bioluminescence-optogenetics (BL-OG) where BL is harnessed to activate bacterial light-driven channels and pumps expressed in neurons to control their activity. BL-OG is realized through opsin-luciferase fusion proteins called luminopsins (LMOs).
View Article and Find Full Text PDFProteostasis dysfunction and activation of the unfolded protein response (UPR) are characteristic of all major neurodegenerative diseases. Nevertheless, although the UPR and proteostasis dysfunction has been studied in great detail in model organisms like yeast and mammalian cell lines, it has not yet been examined in neurons. In this study, we applied a viral vector-mediated expression of a reporter protein based on a UPR transcription factor, ATF4, and time-lapse fluorescent microscopy to elucidate how mouse primary neurons respond to pharmacological and genetic perturbations to neuronal proteostasis.
View Article and Find Full Text PDFThe bacterial exoenzyme C3 transferase (C3) irreversibly inhibits RhoA GTPase leading to stimulation of axonal outgrowth in injured neurons. C3 has been used successfully in models of neurotrauma and shows promise as an option to support cell survival and axonal growth of dopaminergic (DA) neurons in Parkinson's disease (PD) cell therapy. Whether the continuous expression of C3 in DA neurons is well-tolerated is unknown.
View Article and Find Full Text PDFAlthough molecular tools for controlling neuronal activity by light have vastly expanded, there are still unmet needs which require development and refinement. For example, light delivery into the brain is still a major practical challenge that hinders potential translation of optogenetics in human patients. In addition, it would be advantageous to manipulate neuronal activity acutely and precisely as well as chronically and non-invasively, using the same genetic construct in animal models.
View Article and Find Full Text PDF