Publications by authors named "Claire Yu"

Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering.

View Article and Find Full Text PDF

Ocular surface diseases including conjunctival disorders are multifactorial progressive conditions that can severely affect vision and quality of life. In recent years, stem cell therapies based on conjunctival stem cells (CjSCs) have become a potential solution for treating ocular surface diseases. However, neither an efficient culture of CjSCs nor the development of a minimally invasive ocular surface CjSC transplantation therapy has been reported.

View Article and Find Full Text PDF

Functional vasculature is crucial for the maintenance of living tissues via the transport of oxygen, nutrients, and metabolic waste products. As a result, insufficient vascularization in thick engineered tissues will lead to cell death and necrosis due to mass transport and diffusional constraints. To circumvent these limitations, we describe the development of a microscale continuous optical bioprinting (μCOB) platform for 3D printing complex vascularized tissues with superior resolution and speed.

View Article and Find Full Text PDF

Recent advances in 3D bioprinting have transformed the tissue engineering landscape by enabling the controlled placement of cells, biomaterials, and bioactive agents for the biofabrication of living tissues and organs. However, the application of 3D bioprinting is limited by the availability of cytocompatible and printable biomaterials that recapitulate properties of native tissues. Here, we developed an integrated 3D projection bioprinting and orthogonal photoconjugation platform for precision tissue engineering of tailored microenvironments.

View Article and Find Full Text PDF

Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time.

View Article and Find Full Text PDF

Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway.

View Article and Find Full Text PDF

Over the years, 3D printing technologies have transformed the field of tissue engineering and regenerative medicine by providing a tool that enables unprecedented flexibility, speed, control, and precision over conventional manufacturing methods. As a result, there has been a growing body of research focused on the development of complex biomimetic tissues and organs produced via 3D printing to serve in various applications ranging from models for drug development to translational research and biological studies. With the eventual goal to produce functional tissues, an important feature in 3D printing is the ability to tune and modulate the microenvironment to better mimic conditions to improve tissue maturation and performance.

View Article and Find Full Text PDF

Human induced pluripotent stem cell - derived cardiomyocytes (iPSC-CMs) are regarded as a promising cell source for establishing in-vitro personalized cardiac tissue models and developing therapeutics. However, analyzing cardiac force and drug response using mature human iPSC-CMs in a high-throughput format still remains a great challenge. Here we describe a rapid light-based 3D printing system for fabricating micro-scale force gauge arrays suitable for 24-well and 96-well plates that enable scalable tissue formation and measurement of cardiac force generation in human iPSC-CMs.

View Article and Find Full Text PDF

Decellularized extracellular matrices (dECMs) have demonstrated excellent utility as bioscaffolds in recapitulating the complex biochemical microenvironment, however, their use as bioinks in 3D bioprinting to generate functional biomimetic tissues has been limited by their printability and lack of tunable physical properties. Here, we describe a method to produce photocrosslinkable tissue-specific dECM bioinks for fabricating patient-specific tissues with high control over complex microarchitecture and mechanical properties using a digital light processing (DLP)-based scanningless and continuous 3D bioprinter. We demonstrated that tissue-matched dECM bioinks provided a conducive environment for maintaining high viability and maturation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hepatocytes.

View Article and Find Full Text PDF

Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment is a crucial part of tissue engineering. It has been demonstrated that cell behaviors can be affected by not only the hydrogel's physical and chemical properties, but also its three dimensional (3D) geometrical structures. In order to study the influence of 3D geometrical cues on cell behaviors as well as the maturation and function of engineered tissues, it is imperative to develop 3D fabrication techniques to create micro and nanoscale hydrogel constructs.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), as the fifth most common malignant cancer, develops and progresses mostly in a cirrhotic liver where stiff nodules are separated by fibrous bands. Scaffolds that can provide a 3D cirrhotic mechanical environment with complex native composition and biomimetic architecture are necessary for the development of better predictive tissue models. Here, we developed photocrosslinkable liver decellularized extracellular matrix (dECM) and a rapid light-based 3D bioprinting process to pattern liver dECM with tailorable mechanical properties to serve as a platform for HCC progression study.

View Article and Find Full Text PDF

3D bioprinting is emerging as a promising technology for fabricating complex tissue constructs with tailored biological components and mechanical properties. Recent advances have enabled scientists to precisely position materials and cells to build functional tissue models for in vitro drug screening and disease modeling. This review presents state-of-the-art 3D bioprinting techniques and discusses the choice of cell source and biomaterials for building functional tissue models that can be used for personalized drug screening and disease modeling.

View Article and Find Full Text PDF

Surgically discarded adipose tissue is not only an abundant source of multipotent adipose-derived stem/stromal cells (ASCs) but can also be decellularized to obtain a biomimetic microenvironment for tissue engineering applications. The decellularization methods involve processing excised fat through a series of chemical, mechanical, and enzymatic treatment stages designed to extract cells, cellular components, and lipid from the tissues. This process yields a complex 3D bioscaffold enriched in collagens that mimics the biochemical and biomechanical properties of the native extracellular matrix (ECM).

View Article and Find Full Text PDF

Polycarbonates are widely used in food packages, drink bottles, and various healthcare products such as dental sealants and tooth coatings. However, bisphenol A (BPA) and phosgene used in the production of commercial polycarbonates pose major concerns to public health safety. Here, we report a green pathway to prepare BPA-free polycarbonates (BFPs) by thermal ring-opening polymerization and photopolymerization.

View Article and Find Full Text PDF

Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries.

View Article and Find Full Text PDF

With the goal of designing a clinically-relevant expansion strategy for human adipose-derived stem/stromal cells (ASCs), methods were developed to synthesize porous microcarriers derived purely from human decellularized adipose tissue (DAT). An electrospraying approach was applied to generate spherical DAT microcarriers with an average diameter of 428 ± 41 μm, which were soft, compliant, and stable in long-term culture without chemical crosslinking. Human ASCs demonstrated enhanced proliferation on the DAT microcarriers relative to commercially-sourced Cultispher-S microcarriers within a spinner culture system over 1 month.

View Article and Find Full Text PDF

Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source.

View Article and Find Full Text PDF

Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer.

View Article and Find Full Text PDF

To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis.

View Article and Find Full Text PDF

The coencapsulation of growth factor-loaded microspheres with adipose-derived stem cells (ASCs) within a hydrogel matrix was studied as a potential means to enhance ASC chondrogenesis in the development of a cell-based therapeutic strategy for the regeneration of partial thickness chondral defects. A photopolymerizable N-methacrylate glycol chitosan (MGC) was employed to form an in situ gel used to encapsulate microspheres loaded with bone morphogenetic protein 6 (BMP-6) and transforming growth factor-β3 (TGF-β3) with human ASCs. ASC viability and retention were enhanced when the Young's modulus of the MGC ranged between 225 and 380 kPa.

View Article and Find Full Text PDF

With the aim of developing a clinically-translatable cell expansion and delivery vehicle for adipose tissue engineering, the adipogenic differentiation of human adipose-derived stem cells (ASCs) was investigated on microcarriers fabricated from human decellularized adipose tissue (DAT). ASCs seeded on the DAT microcarriers and cultured in adipogenic differentiation medium within a low-shear spinner culture system demonstrated high levels of adipogenic differentiation, as measured by the expression of adipogenic genes, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and intracellular lipid accumulation. In contrast, gelatin microcarrier controls did not demonstrate significant adipogenesis, emphasizing the role of the native matrix in mediating ASC differentiation.

View Article and Find Full Text PDF

Quantum energy transfer in a chain of two-level (spin) units, connected at its ends to two thermal reservoirs, is analyzed in two limits: (i) in the off-resonance regime, when the characteristic subsystem excitation energy gaps are larger than the reservoirs frequencies, or the baths temperatures are low and (ii) in the resonance regime, when the chain excitation gaps match populated bath modes. In the latter case, the model is studied using a master equation approach, showing that the dynamics is ballistic for the particular chain model explored. In the former case, we analytically study the system dynamics utilizing the recently developed Energy-Transfer Born-Oppenheimer formalism [L.

View Article and Find Full Text PDF

We present a unified description of heat flow in two-terminal hybrid quantum systems. Using simple models, we analytically study nonlinear aspects of heat transfer between various reservoirs--metals, solids, and spin baths--mediated by the excitation and the relaxation of a central (subsystem) mode. We demonstrate rich nonlinear current-temperature characteristics, originating from either the molecular anharmonicity or the reservoir (complex) energy spectra.

View Article and Find Full Text PDF