Bioaugmentation is a promising strategy for enhancing trichloroethylene (TCE) degradation in fractured rock. However, slow or incomplete biodegradation can lead to stalling at degradation byproducts such as 1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Over the course of 7 years, we examined the response of groundwater microbial populations in a bioaugmentation test where an emulsified vegetable oil solution (EOS®) and a dechlorinating consortium (KB-1®), containing the established dechlorinator Dehalococcoides (DHC), were injected into a TCE-contaminated fractured rock aquifer.
View Article and Find Full Text PDFWe use particle tracking to determine contributing areas (CAs) to wells for transient flow models that simulate cyclic domestic pumping and extreme recharge events in a small synthetic watershed underlain by dipping sedimentary rocks. The CAs consist of strike-oriented bands at locations where the water table intersects high-hydraulic conductivity beds, and from which groundwater flows to the pumping well. Factors that affect the size and location of the CAs include topographic flow directions, rock dip direction, cross-bed fracture density, and position of the well relative to streams.
View Article and Find Full Text PDFWe present the first demonstration of hydraulic tomography (HT) to estimate the three-dimensional (3D) hydraulic conductivity (K) distribution of a fractured aquifer at high-resolution field scale (HRFS), including the fracture network and connectivity through it. We invert drawdown data collected from packer-isolated borehole intervals during 42 pumping tests in a wellfield at the former Naval Air Warfare Center, West Trenton, New Jersey, in the Newark Basin. Five additional tests were reserved for a quality check of HT results.
View Article and Find Full Text PDFMethanol extractions for chloroethene analyses are conducted on rock samples from seven closely spaced coreholes in a mudstone aquifer that was subject to releases of the nonaqueous phase liquid (NAPL) form of trichloroethene (TCE) between the 1950's and 1990's. Although TCE concentration in the rock matrix over the length of coreholes is dictated by proximity to subhorizontal bedding plane fractures, elevated TCE concentrations in the rock matrix are not continuous along the most permeable bedding plane fractures. A complex configuration of subvertical and subhorizontal fractures appears to be responsible for the TCE distribution from prior TCE releases at land surface.
View Article and Find Full Text PDFField characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE.
View Article and Find Full Text PDFA mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments.
View Article and Find Full Text PDFMajor challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes.
View Article and Find Full Text PDFAn in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes.
View Article and Find Full Text PDFA new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells.
View Article and Find Full Text PDFThe bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 microM; 5.
View Article and Find Full Text PDF