Publications by authors named "Claire Tang"

Using multiparametric flow cytometric analysis, in a cohort of 62 patients with classic Hodgkin lymphoma having a median follow-up period of 69.5 months, we found-patients who experienced primary resistance or disease relapse (DR) had lower percentage of rosetted Hodgkin Reed-Sternberg cells (HRS-cells) as compared with patients who achieved sustained complete remission (SCR) (p=0.022); patients >35 years of age had higher percentage of HRS-cells (p=0.

View Article and Find Full Text PDF
Article Synopsis
  • * The competition involved 1,096 registered teams that utilized annotated images for training and testing AI algorithms, with 225 teams completing validation and 98 succeeding in the testing phase.
  • * Results indicated that diverse teams were able to quickly create effective AI models that could enhance the monitoring of COVID-19 and enable more tailored patient interventions.
View Article and Find Full Text PDF

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B).

View Article and Find Full Text PDF

Languages can use a common repertoire of vocal sounds to signify distinct meanings. In tonal languages, such as Mandarin Chinese, pitch contours of syllables distinguish one word from another, whereas in non-tonal languages, such as English, pitch is used to convey intonation. The neural computations underlying language specialization in speech perception are unknown.

View Article and Find Full Text PDF

The emergence of small open reading frame (sORF)-encoded peptides (SEPs) is rapidly expanding the known proteome at the lower end of the size distribution. Here, we show that the mitochondrial proteome, particularly the respiratory chain, is enriched for small proteins. Using a prediction and validation pipeline for SEPs, we report the discovery of 16 endogenous nuclear encoded, mitochondrial-localized SEPs (mito-SEPs).

View Article and Find Full Text PDF

Introduction: The propagation of mechanochemical signals from the extracellular matrix to the cell nucleus has emerged as a central feature in regulating cellular differentiation and de-differentiation. This process of outside-in signaling and the associated mechanotransduction pathways have been well described in numerous developmental and pathological contexts. However, it remains less clear how mechanotransduction influences the activity of chromatin modifying enzymes that direct gene expression programs.

View Article and Find Full Text PDF

Self-assembling peptide-based hydrogels have encountered increasing interest in the recent years as scaffolds for 3D cell culture or for controlled drug delivery. One of the main challenges is the fine control of the mechanical properties of these materials. The bulk properties of hydrogels not only depend on the intrinsic properties of the fibers but also on the network topology formed.

View Article and Find Full Text PDF

Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech.

View Article and Find Full Text PDF

Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior.

View Article and Find Full Text PDF

We have investigated the possibility of using self-assembling peptide-based viscous solutions and hydrogels as mucoadhesives for the improved delivery of drugs to local mucosal surfaces. The stability of the samples under flow after deposition on a mucosal surface mimic was studied using a simplified in vitro model. Subsequently lidocaine and flurbiprofen, two commercial drugs, were incorporated into the viscous solutions and hydrogels and their release properties investigated using the same model.

View Article and Find Full Text PDF

Self-assembly of aromatic peptide amphiphiles is known to be driven by a combination of π-π stacking of the aromatic moieties and hydrogen bonding between the peptide backbones, with possible stabilisation from the amino acid side chains. Phenylalanine-based Fmoc-dipeptides have previously been reported for their characteristic apparent pKa transitions, which were shown to coincide with significant structural and morphological changes that were peptide sequence dependent. Here, phenylalanine was replaced by leucine and the effect on the self-assembling behaviour of Fmoc-dipeptides was measured using potentiometry, fluorescence and infrared spectroscopy, transmission electron microscopy, X-ray scattering and shear rheometry.

View Article and Find Full Text PDF

We have investigated the self-assembly behavior of fluorenyl-9-methoxycarbonyl (Fmoc)-FG, Fmoc-GG, and Fmoc-GF and compared it to that of Fmoc-FF using potentiometry, fluorescence and infrared spectroscopy, transmission electron microscopy, wide-angle X-ray scattering, and oscillatory rheometry. Titration experiments revealed a substantially shifted apparent pK(a) transition for Fmoc-FG, Fmoc-GG, and Fmoc-GF. The apparent pK(a) values observed correlated with the hydrophobicity (log P) of the Fmoc-dipeptide molecules.

View Article and Find Full Text PDF

The confinement of anionic oligoalanine peptides at the surface of cationic membranes can cooperatively reinforce peptide/peptide interactions and induce secondary-structure formation, and, reciprocally, induce chirality expression of the membrane at the mesoscopic level, thus leading to the formation of three-dimensional chiral fibrillar networks. Such a strong binding effect of peptides with cationic membranes and the resulting cooperative assembly behaviors are observed with two different types of cationic surfactant, namely, two-head two-tail gemini and one-head two-tail surfactants. The ensemble of assembly properties, such as critical micellar concentration (cmc), Krafft temperature (T(k) ), molecular area at the air/water interface, molecular organization (as studied by FTIR attenuated total reflectance (ATR) measurements and small-angle X-ray scattering), and morphology of the aggregates (as observed by optical and electron microscopy studies), are reported.

View Article and Find Full Text PDF

We report the effect of pH on the self-assembly process of Fmoc-diphenylalanine (Fmoc-FF) into fibrils consisting of antiparallel beta-sheets, and show that it results in two apparent pKa shifts of approximately 6.4 and approximately 2.2 pH units above the theoretical pKa (3.

View Article and Find Full Text PDF