Publications by authors named "Claire Spottiswoode"

As the avian embryo grows and develops within the egg, its metabolic rate gradually increases. Obligate avian brood-parasitic birds lay their eggs in the nests of other species to avoid the costs of parental care, and all but one of these brood-parasitic species are altricial at hatching. Yet the chicks of some altricial brood-parasitic species perform the physically demanding task of evicting, stabbing or otherwise killing host progeny within days of hatching.

View Article and Find Full Text PDF

Recent biological surveys of ancient inselbergs in southern Malawi and northern Mozambique have led to the discovery and description of many species new to science, and overlapping centres of endemism across multiple taxa. Combining these endemic taxa with data on geology and climate, we propose the 'South East Africa Montane Archipelago' (SEAMA) as a distinct ecoregion of global biological importance. The ecoregion encompasses 30 granitic inselbergs reaching > 1000 m above sea level, hosting the largest (Mt Mabu) and smallest (Mt Lico) mid-elevation rainforests in southern Africa, as well as biologically unique montane grasslands.

View Article and Find Full Text PDF

Species interactions that vary across environments can create geographical mosaics of genetic coevolution. However, traits mediating species interactions are sometimes culturally inherited. Here we show that traditions of interspecies communication between people and wild birds vary in a culturally determined geographical mosaic.

View Article and Find Full Text PDF
Article Synopsis
  • Foraging animals choose between being 'producers' (finding new food) and 'scroungers' (taking food from others), a decision that impacts ecological and evolutionary systems, especially in economically important contexts.
  • The study focuses on the mutualism between humans and greater honeyguides, which can either guide humans to bees' nests to eat beeswax (producing) or scavenge leftover beeswax (scrounging).
  • The research found that honeyguides often switch between tactics, with those that guide to nests gaining more beeswax; traits like longer tarsi correlate with increased scrounging, while certain female traits may limit guiding to avoid conflict.
View Article and Find Full Text PDF

We studied a brood parasite-host system (the cuckoo finch Anomalospiza imberbis and its host, the tawny-flanked prinia Prinia subflava) to test (1) the fundamental hypothesis that deceptive mimics evolve to resemble models, selecting in turn for models to evolve away from mimics ('chase-away evolution') and (2) whether such reciprocal evolution maintains imperfect mimicry over time. Over only 50 years, parasites evolved towards hosts and hosts evolved away from parasites, resulting in no detectible increase in mimetic fidelity. Our results reflect rapid adaptive evolution in wild populations of models and mimics and show that chase-away evolution in models can counteract even rapid evolution of mimics, resulting in the persistence of imperfect mimicry.

View Article and Find Full Text PDF

Most mimicry systems involve imperfect mimicry, whereas perfect and high-fidelity mimicry are rare. When the fidelity of mimicry is high, mimics might be expected to have the upper hand against their antagonists. However, in coevolving systems, diversification of model phenotypes may provide an evolutionary escape, because mimics cannot simultaneously match all model individuals in the population.

View Article and Find Full Text PDF

What makes a perfect signature? Optimal signatures should be consistent within individuals and distinctive between individuals. In defense against avian brood parasitism, some host species have evolved "signatures" of identity on their eggs, comprising interindividual variation in color and pattern. Tawny-flanked prinia (Prinia subflava) egg signatures facilitate recognition and rejection of parasitic cuckoo finch (Anomalospiza imberbis) eggs.

View Article and Find Full Text PDF

The eggs of avian obligate brood-parasitic species have multiple adaptations to deceive hosts and optimize development in host nests. While the structure and composition of the eggshell in all birds is essential for embryo growth and protection from external threats, parasitic eggs may face specific challenges such as high microbial loads, rapid laying and ejection by the host parents. We set out to assess whether eggshells of avian brood-parasitic species have either (i) specialized structural properties, to meet the demands of a brood-parasitic strategy or (ii) similar structural properties to eggs of their hosts, due to the similar nest environment.

View Article and Find Full Text PDF

The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite-host system using both trait-based and response-based measures of mimetic fidelity.

View Article and Find Full Text PDF

Parasites face a trade-off if the highest quality hosts are also most resistant to exploitation. For brood parasites, well-defended host nests may be both harder to parasitize and harder to predate, leading to better survival of parasitic chicks. This trade-off could be accentuated if brood-parasitic adaptations to reduce front-line defences of hosts, such as mimicry of hawks by cuckoos, do not deter hosts which aggressively mob raptors.

View Article and Find Full Text PDF

Many mutualisms are exploited by third-party species, which benefit without providing anything in return. Exploitation can either destabilize or promote mutualisms, via mechanisms that are highly dependent on the ecological context. Here we study a remarkable bird-human mutualism, in which wax-eating greater honeyguides () guide humans () to wild bees' nests, in an exchange of knowledge about the location of nests for access to the wax combs inside.

View Article and Find Full Text PDF

Claire Spottiswoode and colleagues introduce the ancient partnership between wild honeyguides and human honey hunters.

View Article and Find Full Text PDF

Human-wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human-honeyguide and human-dolphin cooperation, but these are at risk of joining several inactive forms (including human-wolf and human-orca cooperation).

View Article and Find Full Text PDF

Visual complexity is ubiquitous in nature. Drivers of complexity include selection in coevolutionary arms races between antagonists. However, the causes and consequences of biological complexity and its perception are largely understudied, partly because complexity is difficult to quantify.

View Article and Find Full Text PDF

In coevolutionary arms races, interacting species impose selection on each other, generating reciprocal adaptations and counter adaptations. This process is typically enhanced by genetic recombination and heterozygosity, but these sources of evolutionary novelty may be secondarily lost when uniparental inheritance evolves to ensure the integrity of sex-linked adaptations. We demonstrate that host-specific egg mimicry in the African cuckoo finch Anomalospiza imberbis is maternally inherited, confirming the validity of an almost century-old hypothesis.

View Article and Find Full Text PDF

Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands.

View Article and Find Full Text PDF

In mimicry systems, receivers discriminate between the stimuli of models and mimics. Weber's Law of proportional processing states that receiver discrimination is based on proportional, not absolute, differences between stimuli. Weber's Law operates in a variety of taxa and modalities, yet it has largely been ignored in the context of mimicry, despite its potential relevance to whether receivers can discriminate models from mimics.

View Article and Find Full Text PDF

In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed.

View Article and Find Full Text PDF

High air temperatures have measurable negative impacts on reproduction in wild animal populations, including during incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers , a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa.

View Article and Find Full Text PDF

An improved understanding of life-history responses to current environmental variability is required to predict species-specific responses to anthopogenic climate change. Previous research has suggested that cooperation in social groups may buffer individuals against some of the negative effects of unpredictable climates. We use a 15-year dataset on a cooperative breeding arid zone bird, the southern pied babbler , to test (i) whether environmental conditions and group size correlate with survival of young during three development stages (egg, nestling, fledgling) and (ii) whether group size mitigates the impacts of adverse environmental conditions on survival of young.

View Article and Find Full Text PDF

Some evolutionary radiations produce a number of closely-related species that continue to coexist. In such plant systems, when pre-pollination barriers are weak, relatively strong post-pollination reproductive barriers are required to maintain species boundaries. Even when post-pollination barriers are in place, however, reproductive interference and pollinator dependence may strengthen selection for pre-pollination barriers.

View Article and Find Full Text PDF

Climate change is affecting animal populations around the world and one relatively unexplored aspect of species vulnerability is whether and to what extent responses to environmental stressors might be mitigated by variation in group size in social species. We used a 15-year data set for a cooperatively breeding bird, the southern pied babbler Turdoides bicolor, to determine the impact of temperature, rainfall and group size on body mass change and interannual survival in both juveniles and adults. Hot and dry conditions were associated with reduced juvenile growth, mass loss in adults and compromised survival between years in both juveniles (86% reduction in interannual survival) and adults (60% reduction in interannual survival).

View Article and Find Full Text PDF

Brood parasites use the parental care of others to raise their young and sometimes employ mimicry to dupe their hosts. The brood-parasitic finches of the genus Vidua are a textbook example of the role of imprinting in sympatric speciation. Sympatric speciation is thought to occur in Vidua because their mating traits and host preferences are strongly influenced by their early host environment.

View Article and Find Full Text PDF

Migration can influence host-parasite dynamics in animals by increasing exposure to parasites, by reducing the energy available for immune defense, or by culling of infected individuals. These mechanisms have been demonstrated in several comparative analyses; however, few studies have investigated whether conspecific variation in migration distance may also be related to infection risk. Here, we ask whether autumn migration distance, inferred from stable hydrogen isotope analysis of summer-grown feathers ( H) in Europe, correlates with blood parasite prevalence and intensity of infection for willow warblers () wintering in Zambia.

View Article and Find Full Text PDF