Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation.
View Article and Find Full Text PDFAims: We applied the 2021 consensus criteria for both chronic traumatic encephalopathy neuropathological change and traumatic encephalopathy syndrome in a small case series of six former elite-level Australian rugby code players.
Methods: Neuropathological assessment of these cases was carried out at the Sydney and Victorian Brain Banks. Clinical data were collected via clinical interviews and health questionnaires completed by the participants and/or their next of kin, and neuropsychological testing was conducted with participants who were capable of completing this testing.
Freshwater fish biodiversity and abundance are decreasing globally. The drivers of decline are primarily anthropogenic; however, the causative links between disturbances and fish community change are complex and challenging to investigate. We used a suite of sedimentary DNA methods (droplet digital PCR and metabarcoding) and traditional paleolimnological approaches, including pollen and trace metal analysis, ITRAX X-ray fluorescence and hyperspectral core scanning to explore changes in fish abundance and drivers over 1390 years in a small lake.
View Article and Find Full Text PDFCyanobacterial blooms are one of the most significant threats to global water security and freshwater biodiversity. Interactions among multiple stressors, including habitat degradation, species invasions, increased nutrient runoff, and climate change, are key drivers. However, assessing the role of anthropogenic activity on the onset of cyanobacterial blooms and exploring response variation amongst lakes of varying size and depth is usually limited by lack of historical records.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2023
Background: Despite the presence of significant cortical pTDP-43 inclusions of heterogeneous morphologies in patients diagnosed with amyotrophic lateral sclerosis (ALS), pathological subclassification is routinely performed in the minority of patients with concomitant frontotemporal dementia (FTD).
Objective: In order to improve current understanding of the presence and relevance of pathological pTDP-43 subtypes in ALS, the present study examined the pattern of cortical pTDP-43 aggregates in 61 ALS cases without FTD.
Results: Based on the presence, morphology and composition of pTDP-43 pathology, three distinct ALS-TDP subtypes were delineated: (1) A predominant pattern of pTDP-43 granulofilamentous neuronal inclusions (GFNIs) and grains that were immuno-negative for p62 was identified in 18% of cases designated ALS-TDP type E; (2) neuronal cytoplasmic inclusions (NCIs) that were immuno-positive for both pTDP-43 and p62 were observed in 67% of cases assigned ALS-TDP type B; and (3) scarce cortical pTDP-43 and p62 aggregates were identified in 15% of cases coined ALS-TDP type SC (scarce cortical).
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state.
View Article and Find Full Text PDFPoly-GA immunohistochemistry (A) on formalin fixed paraffin embedded cerebellum sections shows a similar distribution to p62 antibody (B) and reliably identifies neuronal cytoplasmic inclusions and neurites in cases with known C9orf72 repeat expansion. This is useful in the research setting where genetic testing has not been performed in life or suitable tissue is not avilable post-mortem.
View Article and Find Full Text PDFAims: Although the orally available brain-penetrant copper compound CuATSM has demonstrated promising effects in SOD1-linked mouse models, the impact of CuATSM on disease pathology in patients with amyotrophic lateral sclerosis (ALS) remains unknown.
Methods: The present study set out to address this deficit by performing the first pilot comparative analysis of ALS pathology in patients that had been administered CuATSM and riluzole [N = 6 cases composed of ALS-TDP (n = 5) and ALS-SOD1 (n = 1)] versus riluzole only [N = 6 cases composed of ALS-TDP (n = 4) and ALS-SOD1 (n = 2)].
Results: Our results revealed no significant difference in neuron density or TDP-43 burden in the motor cortex and spinal cord of patients that had received CuATSM compared with patients that had not.
Parkinson's disease (PD) is a progressive neurodegenerative disorder, pathologically hallmarked by the loss of dopamine neurons in the substantia nigra (SN) and alpha-synuclein aggregation. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a common target to treat the motor symptoms in PD. However, we have less understanding of the cellular changes in the STN during PD, and the impact of DBS on the STN and SN is limited.
View Article and Find Full Text PDFChronic traumatic encephalopathy neuropathologic change can only be definitively diagnosed post-mortem. It has been associated with repetitive mild neurotrauma sustained in amateur and professional contact, collision and combat sports, although it has also been documented in people with a single severe traumatic brain injury and in some people with no known history of brain injury. The characteristic neuropathology is an accumulation of perivascular neuronal and astrocytic phosphorylated tau in the depths of the cortical sulci.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is a widely used method to study ligand-protein interactions. The throughput and sensitivity of SPR has made it an important technology for measuring low-affinity, ultralow weight fragments (<200 Da) in the early stages of drug discovery. However, the biochemistry of membrane proteins, such as G-protein-coupled receptors (GPCRs), makes their SPR fragment screening particularly challenging, especially for native/wild-type, nonthermostabilized mutant receptors.
View Article and Find Full Text PDFLakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored.
View Article and Find Full Text PDFAstrocytes are of vital importance to neuronal function and the health of the central nervous system (CNS), and astrocytic dysfunction as a primary or secondary event may predispose to neurodegeneration. Until recently, the main astrocytic tauopathies were the frontotemporal lobar degeneration with tau (FTLD-tau) group of disorders; however, aging-related tau astrogliopathy (ARTAG) has now been defined. This condition is a self-describing neuropathology mainly found in individuals over 60 years of age.
View Article and Find Full Text PDFBackground: Amyotrophic lateral sclerosis (ALS) is associated with a range of clinical phenotypes and shows progressive degeneration of upper and/or lower motor neurons, and phosphorylated 43 kDa TAR DNA-binding protein (pTDP-43) inclusions in motor and non-motor pathways. Parkinsonian features have been reported in up to 30% of ALS patients, and Lewy bodies, normally associated with Lewy body disease (LBD), have been reported in a small number of ALS cases, with unknown clinical relevance. This study investigates the prevalence of clinically relevant LBD in a prospectively studied ALS cohort to determine whether concomitant pathology contributes to the clinical heterogeneity.
View Article and Find Full Text PDFThis study proposes a practical approach, using the minimum number of brain regions and stains, to consolidate previously published neuropathological criteria into one operationalized schema to differentiate subtypes of frontotemporal lobar degeneration with tau-immunopositive inclusions (FTLD-tau). This approach uses the superior frontal and precentral cortices and hippocampus stained for phosphorylated-tau, p62 and modified Bielschowsky silver, and the midbrain stained only for modified Bielschowsky silver. Accuracy of interrater reliability was determined by 10 raters in 24 FTLD-tau cases (Pick disease = 4, corticobasal degeneration = 9, progressive supranuclear palsy = 5, globular glial tauopathy = 6) including 4 with a mutation in MAPT collected with consent by Sydney Brain Bank.
View Article and Find Full Text PDFIntroduction: One of the major neuropathological features of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) protein in the brain. Evidence suggests that the low-density lipoprotein receptor-associated protein (RAP) binds strongly to Aβ and enhances its cellular uptake and that decreased RAP expression correlates with increased Aβ production in animal models of AD.
Methods: The current study examined whether RAP levels change in AD human brain tissue and whether they are related to the amount of AD pathology.
Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface.
View Article and Find Full Text PDFFrontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.
View Article and Find Full Text PDFBackground: The Centiloid scale was developed to standardise the results of beta-amyloid (Aβ) PET. We aimed to determine the Centiloid unit (CL) thresholds for CERAD sparse and moderate-density neuritic plaques, Alzheimer's disease neuropathologic change (ADNC) score of intermediate or high probability of Alzheimer's Disease (AD), final clinicopathological diagnosis of AD, and expert visual read of a positive Aβ PET scan.
Methods: Aβ PET results in CL for 49 subjects were compared with post-mortem findings, visual read, and final clinicopathological diagnosis.
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2020
Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases.
View Article and Find Full Text PDF