Publications by authors named "Claire Shen"

Mutations in oncogenes and tumor suppressor genes can significantly impact cellular function during cancer development. A comprehensive analysis of their mutation patterns and significant gene ontology terms can provide insights into cancer emergence and suggest potential targets for drug development. This study analyzes twelve cancer subtypes by focusing on significant genetic and molecular factors.

View Article and Find Full Text PDF

Incorporation of irreversible steps in pathway design enhances the overall thermodynamic favorability and often leads to better bioconversion yield given functional enzymes. Using this concept, here we constructed the first non-natural itaconate biosynthesis pathway driven by thioester hydrolysis. Itaconate is a commercially valuable platform chemical with wide applications in the synthetic polymer industry.

View Article and Find Full Text PDF

Background: Cancer has been disproportionally affecting minorities. Genomic-based cancer disparity analyses have been less common than conventional epidemiological studies. In the past decade, mutational signatures have been established as characteristic footprints of endogenous or exogenous carcinogens.

View Article and Find Full Text PDF

Cyanobacteria can convert CO to chemicals such as 2,3-butanediol (2,3-BDO), rendering them promising for renewable production and carbon neutralization, but their applications are limited by low titers. To enhance cyanobacterial 2,3-BDO production, we developed a combinatorial CRISPR interference (CRISPRi) library strategy. We integrated the 2,3-BDO pathway genes and a CRISPRi library into the cyanobacterium PCC7942 using the orthogonal CRISPR system to overexpress pathway genes and attenuate genes that inhibit 2,3-BDO formation.

View Article and Find Full Text PDF

The concerted effort for bioproduction of higher alcohols and other commodity chemicals has yielded a consortium of metabolic engineering techniques to identify targets to enhance performance of engineered microbial strains. Here, we demonstrate the use of metabolomics as a tool to systematically identify targets for improved production phenotypes in . Gas chromatography/mass spectrometry (GC/MS) and ion-pair LC-MS/MS were performed to investigate metabolic perturbations in various 1-propanol producing strains.

View Article and Find Full Text PDF

Stiffness variable materials have been applied in a variety of engineering fields that require adaptation, automatic modulation, and morphing because of their unique property to switch between a rigid, load-bearing state and a soft, compliant state. Stiffness variable polymers comprising phase-changing side-chains (s-SVPs) have densely grafted, highly crystallizable long alkyl side-chains in a crosslinked network. Such a bottlebrush network-like structure gives rise to rigidity modulation as a result of the reversible crystallization and melting of the side chains.

View Article and Find Full Text PDF

Biosynthesis of itaconic acid occurs through decarboxylation of the TCA cycle intermediate cis-aconitate. Engineering of efficient itaconate producers often requires elimination of the highly active isocitrate dehydrogenase to conserve cis-aconitate, leading to 2-ketoglutarate auxotrophy in the producing strains. Supplementation of glutamate or complex protein hydrolysate then becomes necessary, often in large quantities, to support the high cell density desired during itaconate fermentation and adds to the production cost.

View Article and Find Full Text PDF

Urinary tract infections (UTI) represent one of the most common problem within the urological disorders, and it is mainly caused by biofilm formation which leads to bacterial infection. Anti-adhesion and antibacterial agents are two primary mechanisms to prevent biofilm formation; however, current strategies are insufficiently effective. In this study, we developed an effective antibiofilm biodegradable polymer with high biocompatibility.

View Article and Find Full Text PDF

Photosynthetic generation of reducing power makes cyanobacteria an attractive host for biochemical reduction compared to cell-free and heterotrophic systems, which require burning of additional resources for the supply of reducing equivalent. Here, using xylitol synthesis as an example, efficient uptake and reduction of xylose photoautotrophically in Synechococcus elongatus PCC7942 are demonstrated upon introduction of an effective xylose transporter from Escherichia coli (Ec-XylE) and the NADPH-dependent xylose reductase from Candida boidinii (Cb-XR). Simultaneous activation of xylose uptake and matching of cofactor specificity enabled an average xylitol yield of 0.

View Article and Find Full Text PDF

2,5-furandicarboxylic acid (FDCA) is one of the top platform chemicals that can be produced from biomass feedstock. To make the cost of industrial FDCA production compatible with plastics made from fossils, the price of substrates and process complexity should be reduced. The aim of this research is to create a CO -driven syntrophic consortium for the catalytic conversion of renewable biomass-derived 5-hydroxymethylfurfural (HMF) to FDCA.

View Article and Find Full Text PDF

Introduction: Previously constructed Escherichia coli strains that produce 1-propanol use the native threonine pathway, or a heterologous citramalate pathway. However, based on the energy and cofactor requirements of each pathway, a combination of the two pathways produces synergistic effects that increase the theoretical maximum yield with a simultaneous unexplained increase in productivity.

Objective: Identification of key factors that contribute to synergistic effect leading to 1-propanol yield and productivity improvement in E.

View Article and Find Full Text PDF

Enzymatic reduction of acetoin into 2,3-butanediol (2,3-BD) typically requires the reduced nicotinamide adenine dinucleotide (NADH) or its phosphate form (NADPH) as electron donor. Efficiency of 2,3-BD biosynthesis, therefore, is heavily influenced by the enzyme specificity and the cofactor availability which varies dynamically. This work describes the engineering of cofactor flexibility for 2,3-BD production by simultaneous overexpression of an NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (KpBudC) and an NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (CbAdh).

View Article and Find Full Text PDF

Iterative ketoacid elongation has been an essential tool in engineering artificial metabolism, in particular the synthetic alcohols. However, precise control of product specificity is still greatly challenged by the substrate promiscuity of the ketoacid decarboxylase, which unselectively hijacks ketoacid intermediates from the elongation cycle along with the target ketoacid. In this work, preferential tuning of the Lactococcus lactis ketoisovalerate decarboxylase (Kivd) specificity toward 1-pentanol synthesis was achieved via saturated mutagenesis of the key residue V461 followed by screening of the resulting alcohol spectrum.

View Article and Find Full Text PDF

Itaconic acid is an excellent polymeric precursor with wide range of industrial applications. Here, efficient production of itaconate from various renewable substrates was demonstrated by engineered Escherichia coli. Limitation in the itaconate precursor supply was revealed by feeding of the key intermediate citrate to the culture medium.

View Article and Find Full Text PDF

Background: As a natural fermentation product secreted by species, bio-based 1-butanol has attracted great attention for its potential as alternative fuel and chemical feedstock. Feasibility of microbial 1-butanol production has also been demonstrated in various recombinant hosts.

Results: In this work, we constructed a self-regulated 1-butanol production system in by borrowing its endogenous fermentation regulatory elements (FRE) to automatically drive the 1-butanol biosynthetic genes in response to its natural fermentation need.

View Article and Find Full Text PDF

Fermentative redox balance has long been utilized as a metabolic evolution platform to improve efficiency of NADH-dependent pathways. However, such system relies on the complete recycling of NADH and may become limited when the target pathway results in excess NADH stoichiometrically. In this study, endogenous capability of Escherichia coli for 2,3-butanediol (2,3-BD) synthesis was explored using the anaerobic selection platform based on redox balance.

View Article and Find Full Text PDF

Background: Cyanobacterium Synechococcus elongatus PCC 7942 holds promise for biochemical conversion, but gene deletion in PCC 7942 is time-consuming and may be lethal to cells. CRISPR interference (CRISPRi) is an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single guide RNA (sgRNA) to repress sequence-specific genes without the need of gene knockout, and is repurposed to rewire metabolic networks in various procaryotic cells.

Results: To employ CRISPRi for the manipulation of gene network in PCC 7942, we integrated the cassettes expressing enhanced yellow fluorescent protein (EYFP), dCas9 and sgRNA targeting different regions on eyfp into the PCC 7942 chromosome.

View Article and Find Full Text PDF

Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-guided genome editing system, yet its application for cyanobacteria engineering has yet to be reported. Here we demonstrated that CRISPR-Cas9 system can effectively trigger programmable double strand break (DSB) at the chromosome of PCC 7942 and provoke cell death.

View Article and Find Full Text PDF

Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism.

View Article and Find Full Text PDF

Glycogen synthesis initiated by glucose-1-phosphate adenylyltransferase (glgC) represents a major carbon storage route in cyanobacteria which could divert a significant portion of assimilated carbon. Significant growth retardation in cyanobacteria with glgC knocked out (ΔglgC) has been reported in high light conditions. Here, we knocked out the glgC gene and analyzed its effects on carbon distribution in an isobutanol-producing strain of Synechococcus elongatus PCC7942 and its parental wild-type strain.

View Article and Find Full Text PDF

Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other.

View Article and Find Full Text PDF

An Escherichia coli strain was engineered to synthesize 1-hexanol from glucose by extending the coenzyme A (CoA)-dependent 1-butanol synthesis reaction sequence catalyzed by exogenous enzymes. The C4-acyl-CoA intermediates were first synthesized via acetyl-CoA acetyltransferase (AtoB), 3-hydroxybutyryl-CoA dehydrogenase (Hbd), crotonase (Crt), and trans-enoyl-CoA reductase (Ter) from various organisms. The butyryl-CoA synthesized was further extended to hexanoyl-CoA via β-ketothiolase (BktB), Hbd, Crt, and Ter.

View Article and Find Full Text PDF

1-Butanol, an important chemical feedstock and advanced biofuel, is produced by Clostridium species. Various efforts have been made to transfer the clostridial 1-butanol pathway into other microorganisms. However, in contrast to similar compounds, only limited titers of 1-butanol were attained.

View Article and Find Full Text PDF

Biofuels are currently produced from carbohydrates and lipids in feedstock. Proteins, in contrast, have not been used to synthesize fuels because of the difficulties of deaminating protein hydrolysates. Here we apply metabolic engineering to generate Escherichia coli that can deaminate protein hydrolysates, enabling the cells to convert proteins to C4 and C5 alcohols at 56% of the theoretical yield.

View Article and Find Full Text PDF