Publications by authors named "Claire S Teitelbaum"

Outbreaks of COVID-19 in humans, Dutch elm disease in forests, and highly pathogenic avian influenza in wild birds and poultry highlight the disruptive impacts of infectious diseases on public health, ecosystems and economies. Infectious disease dynamics often depend on environmental conditions that drive occurrence, transmission and outbreaks. Remote sensing can contribute to infectious disease research and management by providing standardized environmental data across broad spatial and temporal extents, often at no cost to the user.

View Article and Find Full Text PDF

Contemporary wildlife disease management is complex because managers need to respond to a wide range of stakeholders, multiple uncertainties, and difficult trade-offs that characterize the interconnected challenges of today. Despite general acknowledgment of these complexities, managing wildlife disease tends to be framed as a scientific problem, in which the major challenge is lack of knowledge. The complex and multifactorial process of decision-making is collapsed into a scientific endeavor to reduce uncertainty.

View Article and Find Full Text PDF
Article Synopsis
  • * A study conducted in January 2022 involved capturing 43 mallards in Tennessee, revealing that 11 were infected with HPAI H5N1 clade 2.3.4.4b, which indicated active transmission of the virus among birds in their wintering habitat.
  • * The research showed no differences in movement, body condition, or survival rates between infected and uninfected mallards, suggesting that these birds could play a role in the ongoing spread of
View Article and Find Full Text PDF

Environmental contamination is widespread and can negatively impact wildlife health. Some contaminants, including heavy metals, have immunosuppressive effects, but prior studies have rarely measured contamination and disease simultaneously, which limits our understanding of how contaminants and pathogens interact to influence wildlife health. Here, we measured mercury concentrations, influenza infection, influenza antibodies and body condition in 749 individuals from 11 species of wild ducks overwintering in California.

View Article and Find Full Text PDF

AbstractUrban areas are expanding globally with far-reaching ecological consequences, including for wildlife-pathogen interactions. Wildlife show tremendous variation in their responses to urbanization; even within a single population, some individuals can specialize on urban or natural habitat types. This specialization could alter pathogen impacts on host populations via changes to wildlife movement and aggregation.

View Article and Find Full Text PDF

Migrating animals may benefit from social or experiential learning, yet whether and how these learning processes interact or change over time to produce observed migration patterns remains unexplored. Using 16 years of satellite-tracking data from 105 reintroduced whooping cranes, we reveal an interplay between social and experiential learning in migration timing. Both processes dramatically improved individuals' abilities to dynamically adjust their timing to track environmental conditions along the migration path.

View Article and Find Full Text PDF

Background: Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats.

View Article and Find Full Text PDF

In environments that vary unpredictably, many animals are nomadic, moving in an irregular pattern that differs from year to year. Exploring the mechanisms of nomadic movement is needed to understand how animals survive in highly variable environments, and to predict behavioural and population responses to environmental change. We developed a network model to identify plausible mechanisms of nomadic animal movement by comparing the performance of multiple movement rules along a continuum from nomadism to residency.

View Article and Find Full Text PDF

The introduced fungal pathogen is causing decline of several species of bats in North America, with some even at risk of extinction or extirpation. The severity of the epidemic of white-nose syndrome caused by has prompted investigation of the transmission and virulence of infection at multiple scales, but linking these scales is necessary to quantify the mechanisms of transmission and assess population-scale declines.We built a model connecting within-hibernaculum disease dynamics of little brown bats to regional-scale dispersal, reproduction, and disease spread, including multiple plausible mechanisms of transmission.

View Article and Find Full Text PDF

Conversion of natural habitats into urban landscapes can expose wildlife to novel pathogens and alter pathogen transmission pathways. Because transmission is difficult to quantify for many wildlife pathogens, mathematical models paired with field observations can help select among competing transmission pathways that might operate in urban landscapes. Here we develop a mathematical model for the enteric bacteria Salmonella enterica in urban-foraging white ibis ( Eudocimus albus) in south Florida as a case study to determine (i) the relative importance of contact-based versus environmental transmission among ibis and (ii) whether transmission can be supported by ibis alone or requires external sources of infection.

View Article and Find Full Text PDF

Recent advances in animal tracking reveal that many species display irregular movements that do not fall into classical categories of movement patterns such as range residency or migration. Here, we develop a unifying framework that distinguishes these nomadic movements based on their patterns, drivers, and mechanisms. Though they occur in diverse taxa and geographic regions, nomadic movements are united by both their underlying environmental drivers, mainly environmental stochasticity, and the resulting irregular, far-ranging movement patterns.

View Article and Find Full Text PDF

Body condition metrics are widely used to infer animal health and to assess costs of parasite infection. Since parasites harm their hosts, ecologists might expect negative relationships between infection and condition in wildlife, but this assumption is challenged by studies showing positive or null condition-infection relationships. Here, we outline common condition metrics used by ecologists in studies of parasitism, and consider mechanisms that cause negative, positive, and null condition-infection relationships in wildlife systems.

View Article and Find Full Text PDF

Long-distance animal movements can increase exposure to diverse parasites, but can also reduce infection risk through escape from contaminated habitats or culling of infected individuals. These mechanisms have been demonstrated within and between populations in single-host/single-parasite interactions, but how long-distance movement behaviours shape parasite diversity and prevalence across host taxa is largely unknown. Using a comparative approach, we analyse the parasite communities of 93 migratory, nomadic and resident ungulate species.

View Article and Find Full Text PDF

Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours.

View Article and Find Full Text PDF

Animal migration is a global phenomenon, but few studies have examined the substantial within- and between-species variation in migration distances. We built a global database of 94 land migrations of large mammalian herbivore populations ranging from 10 to 1638 km. We examined how resource availability, spatial scale of resource variability and body size affect migration distance among populations.

View Article and Find Full Text PDF