Differential interference contrast images of various optical fibers and optical fiber Bragg gratings (FBGs), written with the phase mask technique, are presented to provide information about the resultant refractive index variations present in each case. Use of different fiber types using two distinct phase masks producing four Type I FBGs and a Type In FBG allowed similarities and differences in these FBG images due to variations in the Talbot diffraction patterns produced to be studied.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2012
The growth of reflectance peaks from optical fiber Bragg gratings has been studied to determine the relative importance of grating features when writing with the phase-mask technique. Measurements of spectra for two different fiber types using two distinct phase masks allowed the contribution from grating features of half the phase-mask periodicity and of the phase-mask periodicity at the Bragg wavelength to be determined. The dominance of the latter periodicity was ascribed to either the small fiber core diameter that limited the extent of the Talbot diffraction pattern, or the enhanced ±2 diffraction orders of a custom-made phase mask used.
View Article and Find Full Text PDFA pair of reflection peaks/transmission dips, at twice the Bragg wavelength, were observed in spectra of a Type I fiber Bragg grating written with the standard phase mask technique. The occurrence of two peaks/dips, rather than one, is attributed to the interleaved refractive index modulations along the fiber core, with the periodicity of the phase mask that has been observed previously in images of gratings that cause destructive interference in a reflected wave at the Bragg condition owing to the pi phase difference between the grating phases. Thus the standard phase mask technique produced an alternative type of pi-phase-shifted grating at twice the design Bragg wavelength.
View Article and Find Full Text PDFA comparison is made between the modeled and experimentally determined microscopic images of a type I Bragg grating produced in the core of an optical fiber using the ultraviolet irradiation of a phase mask. The simulated image of the refractive-index distribution, which assumes a linear relationship between the irradiation intensity and the refractive-index change, is in good agreement with the measured image.
View Article and Find Full Text PDFNondestructive images of refractive-index variation within a type I fiber Bragg grating have been recorded by the differential interference contrast imaging technique. The images reveal detailed structure within the fiber core that is consistent with the formation of Talbot planes in the diffraction pattern behind the phase mask that had been used to fabricate the grating.
View Article and Find Full Text PDF