Publications by authors named "Claire Riggs"

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown.

View Article and Find Full Text PDF

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs.

View Article and Find Full Text PDF

Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles.

View Article and Find Full Text PDF

The compartmentalization of cellular function is achieved largely through the existence of membrane-bound organelles. However, recent work suggests a novel mechanism of compartmentalization mediated by membraneless structures that have liquid droplet-like properties and arise through phase separation. Cytoplasmic stress granules (SGs) are the best characterized and are induced by various stressors including arsenite, heat shock, and glucose deprivation.

View Article and Find Full Text PDF

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics.

View Article and Find Full Text PDF

Stress granules (SGs) and processing bodies (PBs) are membraneless ribonucleoprotein-based cellular compartments that assemble in response to stress. SGs and PBs form through liquid-liquid phase separation that is driven by high local concentrations of key proteins and RNAs, both of which dynamically shuttle between the granules and the cytoplasm. SGs uniquely contain certain translation initiation factors and PBs are uniquely enriched with factors related to mRNA degradation and decay, although recent analyses reveal much broader protein commonality between these granules.

View Article and Find Full Text PDF

Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species.

View Article and Find Full Text PDF

Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance.

View Article and Find Full Text PDF

Extreme anoxia tolerance requires a metabolic depression whose modulation could involve small non-coding RNAs (small ncRNAs), which are specific, rapid, and reversible regulators of gene expression. A previous study of small ncRNA expression in embryos of the annual killifish , the most anoxia-tolerant vertebrate known, revealed a specific expression pattern of small ncRNAs that could play important roles in anoxia tolerance. Here, we conduct a comparative study on the presence and expression of small ncRNAs in the most anoxia-tolerant representatives of several major vertebrate lineages, to investigate the evolution of and mechanisms supporting extreme anoxia tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • The annual killifish Austrofundulus limnaeus is being studied for its unique adaptations to extreme conditions like desiccation and anoxia in ephemeral ponds in Venezuela.
  • Researchers have successfully sequenced the first draft genome of A. limnaeus, utilizing advanced genomic assembly and annotation techniques, showing it has high completeness in gene regions.
  • This genome will serve as an important resource for understanding the genetic basis of stress tolerance and evolutionary mechanisms in annual killifishes, beneficial for exploring broader vertebrate physiology and evolution.
View Article and Find Full Text PDF

Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death.

View Article and Find Full Text PDF

Background: Austrofundulus limnaeus is an annual killifish from the Maracaibo basin of Venezuela. Annual killifishes are unique among vertebrates in their ability to enter into a state of dormancy at up to three distinct developmental stages termed diapause I, II, and III. These embryos are tolerant of a wide variety of environmental stresses and develop relatively slowly compared with nonannual fishes.

View Article and Find Full Text PDF

Background: The crystallographic structure of the gigantic hemoglobin (erythrocruorin) of the annelid worm, Lumbricus terrestris, provides a molar mass of 3.6MDa for the hexagonal bilayer structure. Prior to this determination, some light-scattering and ultracentrifugal measurements indicated higher masses: 4.

View Article and Find Full Text PDF

Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45.

View Article and Find Full Text PDF

The extracellular hemoglobin (Hb) of the earthworm, Lumbricus terrestris, has four major kinds of globin chains: a, b, c, and d, present in equimolar proportions, and additional non-heme, non-globin scaffolding chains called linkers that are required for the calcium-dependent assembly of the full-sized molecule. The amino acid sequences of all four of the globin chains and one of the linkers (L1) have previously been determined. The amino acid sequences via cDNA of each of the three remaining linkers, L2, L3, and L4, have been determined so that the sequences of all constituent polypeptides of the hemoglobin are now known.

View Article and Find Full Text PDF