Background: Preoperative anaemia is associated with increased morbidity and mortality in surgical patients. Recent national patient blood management guideline recommended screening surgical patients for anaemia, particularly iron deficiency anaemia, without reference to the prevalence of anaemia or iron deficiency anaemia in this patient population.
Aims: To establish the prevalence and cause of preoperative anaemia in elective major surgery patients.
Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptorδ (PPARδ) regulates a multiplicity of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes likely create risk factors associated with the ability of PPARδ agonists to promote tumorigenesis in some organs. In the present study, we describe a new gastric tumor mouse model that is dependent on the potent and highly selective PPARδ agonist GW501516 following carcinogen administration.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer.
View Article and Find Full Text PDFHigh intensity focused ultrasound (HIFU) may be employed in two ways: continuous exposures for thermal ablation of tissue (> 60 degrees C), and pulsed-exposures for non-ablative effects, including low temperature hyperthermia (37-45 degrees C), and non thermal effects (e.g. acoustic cavitation and radiation forces).
View Article and Find Full Text PDFA hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145.
View Article and Find Full Text PDFRAS oncogenes are thought to play a role at multiple stages of tumorigenesis. The role and mechanisms by which RAS oncogenes maintain the transformed state of human cancer cells are poorly understood. Here, we have studied the role of oncogenic K-RAS in maintaining cytoskeletal disruption, cell adhesion and motility in metastatic colon carcinoma cells.
View Article and Find Full Text PDFSome of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.
View Article and Find Full Text PDFThe Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo.
View Article and Find Full Text PDF