Publications by authors named "Claire Pirim"

The role of polycyclic aromatic hydrocarbons (PAHs) in the formation of nascent soot particles in flames is well established and yet the detailed mechanisms are still not fully understood. Here we provide experimental evidence of the occurrence of dimerization of PAHs in the gas phase before soot formation in a laminar diffusion methane flame, supporting the hypothesis of stabilization of dimers through the formation of covalent bonds. The main findings of this work derive from the comparative chemical analysis of samples extracted from the gas to soot transition region of a laminar diffusion methane flame, and highlight two different groups of hydrocarbons that coexist in the same mass range, but show distinctly different behavior when processed with statistical analysis.

View Article and Find Full Text PDF

We present a study of the reactions of the meteoritic mineral schreibersite (Fe,Ni)3P, focusing primarily on surface chemistry and prebiotic phosphorylation. In this work, a synthetic analogue of the mineral was synthesized by mixing stoichiometric proportions of elemental iron, nickel and phosphorus and heating in a tube furnace at 820 °C for approximately 235 hours under argon or under vacuum, a modification of the method of Skála and Drábek (2002). Once synthesized, the schreibersite was characterized to confirm the identity of the product as well as to elucidate the oxidation processes affecting the surface.

View Article and Find Full Text PDF

Lyman-α (121.6 nm) photon and 1 keV electron-beam irradiation of pure HCONH2 (FA) ice and H2O:HCONH2 ice mixtures on high-surface-area SiO2 nanoparticles have been investigated with FT-IR spectroscopy and temperature programmed desorption (TPD). Lyman-α photolysis of pure amorphous FA ice grown at 70 K and crystalline FA ice produced by annealing to 165 K gives spectral signatures between 2120 and 2195 cm(-1) that we assign primarily to OCN(-) and CO.

View Article and Find Full Text PDF

Fourier transform-infrared spectroscopy (FT-IR) and temperature programmed desorption (TPD) have been used to examine the thermal processing of three isotopes of pure formamide ice (HCONH2, DCONH2, and HCOND2) adsorbed on a SiO2 interstellar grain analogue. Pure formamide ice on SiO2 nanoparticles displays at least three different phases that we interpret as a porous phase from ∼70-145 K, a compacted polycrystalline phase from ∼145-210 K, and a third slow diffusion and sublimation phase from ∼210-380 K. Possible dimerization is also discussed.

View Article and Find Full Text PDF

Reactions between dilute methane and nonenergetic hydroxyl radicals were carried out at 3.5 K. The temperature was kept low in order to characterize the stepwise reaction and prevent parasitic side reactions.

View Article and Find Full Text PDF

Galacto-oligosaccharides (GOS) are versatile food ingredients that possess prebiotic properties. However, at present there is a lack of precise analytical methods to demonstrate specific GOS consumption by bifidobacteria. To better understand the role of GOS as prebiotics, purified GOS (pGOS) without disaccharides and monosaccharides was prepared and used in bacterial fermentation experiments.

View Article and Find Full Text PDF