Publications by authors named "Claire McWhite"

The variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product.

View Article and Find Full Text PDF
Article Synopsis
  • All eukaryotes originated from a single-celled microbe called the Last Eukaryotic Common Ancestor (LECA), existing 1.5 - 1.8 billion years ago, which shared nearly half of its genes with modern eukaryotes.
  • Researchers identified 10,092 core protein-coding gene families likely present in LECA and utilized over 26,000 mass spectrometry analyses from 31 species to explore how these proteins interact in complex biological systems.
  • By studying these ancient protein interactions, the research revealed new insights into gene-disease relationships in humans, particularly related to bone density and congenital defects, highlighting the importance of understanding LECA's biochemical organization for modern genetics.
View Article and Find Full Text PDF

Cell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore-forming) and outward-facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the regulation of photosynthesis using the alga Chlamydomonas reinhardtii and identified 70 genes that were previously not well understood but are essential for the process.
  • They analyzed mutant strains missing these genes, leading to the assignment of 34 genes involved in forming and regulating specific photosynthetic complexes.
  • The study reveals new roles for several proteins in photosynthesis regulation, providing a valuable resource for understanding how photosynthesis works at a molecular level.
View Article and Find Full Text PDF

Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Multiple sequence alignment (MSA) is a critical step in the study of protein sequence and function. Typically, MSA algorithms progressively align pairs of sequences and combine these alignments with the aid of a guide tree. These alignment algorithms use scoring systems based on substitution matrices to measure amino acid similarities.

View Article and Find Full Text PDF

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages.

View Article and Find Full Text PDF

Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism.

View Article and Find Full Text PDF

Co-fractionation/mass spectrometry (CF/MS) is a flexible and powerful method to detect physical associations of proteins. CF/MS can be applied to any tissue or organism without the need for protein-specific antibodies or epitope tags. Here, we outline two alternate protocols for MS preparation of samples (containing low or high salt) and a computational pipeline (cfmsflow) that together allow the successful application of this approach.

View Article and Find Full Text PDF

Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.

View Article and Find Full Text PDF

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants.

View Article and Find Full Text PDF

Influenza databases now contain over 100,000 worldwide sequence records for strains influenza A(H3N2) and A(H1N1). Although these data facilitate global research efforts and vaccine development practices, they also represent a stumbling block for researchers because of their confusing and heterogeneous annotation. Unclear passaging annotations are particularly concerning given the recent work highlighting the presence and risk of false adaptation signals introduced by cell passaging of viral isolates.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) is a complex cellular machinery that catalyzes degradation of misfolded or damaged proteins and regulates turnover of native proteins in eukaryotic cells, thus playing a crucial role in maintaining protein homeostasis. The UPS has emerged as a drug target for a diverse range of diseases characterized by accumulation of misfolded or aggregated proteins. While enhancement of UPS activity is widely recognized as a promising strategy to prevent accumulation of aberrant, off-pathway protein conformations and ameliorate the phenotypes of a wide range of protein misfolding diseases, the molecular mechanisms underlying activation of proteasomal degradation are poorly characterized.

View Article and Find Full Text PDF

Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from .

View Article and Find Full Text PDF

Macromolecular protein complexes carry out many of the essential functions of cells, and many genetic diseases arise from disrupting the functions of such complexes. Currently, there is great interest in defining the complete set of human protein complexes, but recent published maps lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass spectrometry experiments, we present hu.

View Article and Find Full Text PDF

Clinical influenza A virus isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation, which can confound evolutionary analyses of the viral sequences.

View Article and Find Full Text PDF

Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene's age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes.

View Article and Find Full Text PDF

Direct comparison of human diseases with model phenotypes allows exploration of key areas of human biology which are often inaccessible for practical or ethical reasons. We review recent developments in comparative evolutionary approaches for finding models for genetic disease, including high-throughput generation of gene/phenotype relationship data, the linking of orthologous genes and phenotypes across species, and statistical methods for linking human diseases to model phenotypes.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) has emerged as a drug target for diverse diseases characterized by altered proteostasis, but pharmacological agents that enhance UPS activity have been challenging to establish. Here we report the Deg-On system, a genetic inverter that translates proteasomal degradation of the transcriptional regulator TetR into a fluorescent signal, thereby linking UPS activity to an easily detectable output, which can be tuned using tetracycline. We demonstrate that this circuit responds to modulation of UPS activity in cell culture arising from the inhibitor MG-132 and activator PA28γ.

View Article and Find Full Text PDF

Our previous data suggested that the human basic helix-loop-helix transcription factor achaete-scute homologue-1 (hASH1) may stimulate both proliferation and migration in the lung. In the CNS, cyclin-dependent kinase 5 (Cdk5) and its activator p35 are important for neuronal migration that is regulated by basic helix-loop-helix transcription factors. Cdk5/p35 may also play a role in carcinogenesis.

View Article and Find Full Text PDF