Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions.
View Article and Find Full Text PDFSpatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.
View Article and Find Full Text PDFTissue-resident memory T (T) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts T activation and whether T cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a T-like phenotype in ES lungs.
View Article and Find Full Text PDFT cell memory is critical in controlling infection and plays an important role in anti-tumor responses in solid cancers. While effector memory and central memory T cells circulate and patrol non-lymphoid and lymphoid organs respectively, tissue resident memory T cells (T) permanently reside in tissues and provide local protective immune responses. In a number of solid tumors, tumor-specific T cell memory responses likely play an important role in keeping tumors in check, limiting cancer cell dissemination and reducing risk of relapse.
View Article and Find Full Text PDFDevelopment of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo.
View Article and Find Full Text PDFBefore squamous cell lung cancer develops, precancerous lesions can be found in the airways. From longitudinal monitoring, we know that only half of such lesions become cancer, whereas a third spontaneously regress. Although recent studies have described the presence of an active immune response in high-grade lesions, the mechanisms underpinning clinical regression of precancerous lesions remain unknown.
View Article and Find Full Text PDFARHGAP19 is a hematopoietic-specific Rho GTPase-activating protein (RhoGAP) that acts through the RhoA/ROCK pathway to critically regulate cell elongation and cytokinesis during lymphocyte mitosis. We report here that, during mitosis progression, ARHGAP19 is sequentially phosphorylated by the RhoA-activated kinases ROCK1 and ROCK2 (hereafter ROCK) on serine residue 422, and by CDK1 on threonine residues 404 and 476. The phosphorylation of ARHGAP19 by ROCK occurs before mitosis onset and generates a binding site for 14-3-3 family proteins.
View Article and Find Full Text PDF