Publications by authors named "Claire M Phoumyvong"

We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection.

View Article and Find Full Text PDF

Designing entirely new protein structures remains challenging because we do not fully understand the biophysical determinants of folding stability. Yet, some protein folds are easier to design than others. Previous work identified the 43-residue ɑββɑ fold as especially challenging: The best designs had only a 2% success rate, compared to 39 to 87% success for other simple folds [G.

View Article and Find Full Text PDF

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses.

View Article and Find Full Text PDF

Activation of the IRE-1/XBP-1 pathway has been linked to many human diseases. We report a novel fluorescent tricyclic chromenone inhibitor, D-F07, in which we incorporated a 9-methoxy group onto the chromenone core to enhance its potency and masked the aldehyde to achieve long-term efficacy. Protection of the aldehyde as a 1,3-dioxane acetal led to strong fluorescence emitted by the coumarin chromophore, enabling D-F07 to be tracked inside the cell.

View Article and Find Full Text PDF