The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called "valley of death." Here, we present a proposed blueprint for translational regenerative medicine.
View Article and Find Full Text PDFThe nonsense mediated decay (NMD) pathway is a critical surveillance mechanism for identifying aberrant mRNA transcripts. It is unknown, however, whether the NMD system is affected by seizures in vivo and whether changes confer beneficial or maladaptive responses that influence long-term outcomes such the network alterations that produce spontaneous recurrent seizures. Here we explored the responses of the NMD pathway to prolonged seizures (status epilepticus) and investigated the effects of NMD inhibition on epilepsy in mice.
View Article and Find Full Text PDFThe ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus.
View Article and Find Full Text PDFRecent studies demonstrated that overexpression of the molecular chaperone 14-3-3ζ protects the brain against endoplasmic reticulum (ER) stress and prolonged seizures. The 14-3-3 targets responsible for improved neuronal survival after seizures remain unknown. Here we explored the mechanism, finding that protein levels of the ER-stress-associated transcription factor C/EBP homologous protein (CHOP) were significantly higher in 14-3-3ζ-overexpressing mice.
View Article and Find Full Text PDFNeurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation.
View Article and Find Full Text PDFFOXO3a is member of the Forkhead box class O transcription factors, which functions in diverse pathways to regulate cellular metabolism, differentiation, and apoptosis. FOXO3a shuttles between the cytoplasm and nucleus and may be activated in neurons by stressors, including seizures. A subset of nuclear transcription factors may localize to mitochondria, but whether FOXO3a is present within brain mitochondria is unknown.
View Article and Find Full Text PDF