Blue cone monochromacy (BCM) is a rare X-linked retinal disease characterized by the absence of L- and M-opsin in cone photoreceptors, considered a potential gene therapy candidate. However, most experimental ocular gene therapies utilize subretinal vector injection which would pose a risk to the fragile central retinal structure of BCM patients. Here we describe the use of ADVM-062, a vector optimized for cone-specific expression of human L-opsin and administered using a single intravitreal (IVT) injection.
View Article and Find Full Text PDFPurpose: To identify challenges and opportunities for the development of treatments for Usher syndrome (USH) type 1B.
Methods: In September 2021, the Foundation Fighting Blindness hosted a virtual workshop of clinicians, academic and industry researchers, advocates, and affected individuals and their families to discuss the challenges and opportunities for USH1B treatment development.
Results: The workshop began with insights from individuals affected by USH1B.
Inhibition of vascular endothelial growth factor is the mode of action for several approved therapies, including aflibercept, for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Lack of compliance due to the frequent intravitreal dosing requirements may result in inadequately treated disease, leading to irreversible vision impairment. To date, the majority of gene therapy clinical trials providing sustained anti-VEGF levels in the retina have been limited to subretinal injections requiring a vitrectomy.
View Article and Find Full Text PDFPurpose: To evaluate the long-term safety of vascular endothelial growth factor (VEGF) suppression with sustained aflibercept expression after a single intravitreal injection (IVI) of ADVM-022, an anti-VEGF gene therapy, in non-human primates (NHPs).
Methods: Non-human primates received bilateral IVI of ADVM-022, a gene therapy vector encoding aflibercept, a standard of care for the treatment of VEGF-based retinal disease. Aflibercept levels from ocular fluids and tissues were measured.
Several standard-of-care therapies for the treatment of retinal disease, including aflibercept, inhibit vascular endothelial growth factor (VEGFA). The main shortcoming of these therapies is potential undertreatment due to a lack of compliance resulting from the need for repeated injections. Gene therapy may provide sustained levels of anti-VEGFA proteins in the retina following a single injection.
View Article and Find Full Text PDFThe identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells' functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown.
View Article and Find Full Text PDFPurpose: Mucolipidosis II and III (ML II; ML III) are lysosomal storage diseases characterized by a deficiency in GlcNAc-1-phosphotransferase. Patients with ML III have retinal disease, but in cases of the more clinically severe ML II, human ophthalmic studies are limited. In this study, retinal function and overall disease were assessed in mice lacking GNPTAB, the gene mutated in patients with ML II.
View Article and Find Full Text PDFUDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on acid hydrolases. The transferase exists as an alpha(2)beta(2)gamma(2) hexameric complex with the alpha- and beta-subunits derived from a single precursor molecule. The catalytic function of the transferase is attributed to the alpha- and beta-subunits, whereas the gamma-subunit is believed to be involved in the recognition of a conformation-dependent protein determinant common to acid hydrolases.
View Article and Find Full Text PDF