Publications by authors named "Claire L Russell"

Footrot causes 70-90% of lameness in sheep in Great Britain. With approximately 5% of 18 million adult sheep lame at any one time, it costs the UK sheep industry £24-84 million per year. The Gram-negative anaerobe is the causative agent, with disease severity influenced by bacterial load, virulence, and climate.

View Article and Find Full Text PDF

Rationale: Ideal biomarkers are present in readily accessible samples including plasma and cerebrospinal fluid (CSF), and are directly derived from diseased tissue, therefore likely to be of relatively low abundance. Traditional unbiased proteomic approaches for biomarker discovery have struggled to detect low-abundance markers due to the high dynamic range of proteins, the predominance of hyper-abundant proteins, and the use of data-dependent acquisition mass spectrometry (MS). To overcome these limitations and improve biomarker discovery in peripheral fluids, we have developed TMTcalibrator™; a novel MS workflow combining isobarically labelled diseased tissue digests in parallel with an appropriate set of labelled body fluids to increase the chance of identifying low-abundance, tissue-derived biomarkers.

View Article and Find Full Text PDF

Aberrant tau phosphorylation is a hallmark in Alzheimer's disease (AD), believed to promote formation of paired helical filaments, the main constituent of neurofibrillary tangles in the brain. While cerebrospinal fluid (CSF) levels of total tau and tau phosphorylated at threonine residue 181 (pThr181) are established core biomarkers for AD, the value of alternative phosphorylation sites, which may have more direct relevance to pathology, for early diagnosis is not yet known, largely due to their low levels in CSF and lack of standardized detection methods. To overcome sensitivity limitations for analysis of phosphorylated tau in CSF, we have applied an innovative mass spectrometry (MS) workflow, TMTcalibratortrademark, to enrich and enhance the detection of phosphoproteome components of AD brain tissue in CSF, and enable the quantitation of these analytes.

View Article and Find Full Text PDF

Dichelobacter nodosus (D. nodosus) is the essential causative agent of footrot in sheep. The current study investigated when D.

View Article and Find Full Text PDF

Analysis of bacterial populations in situ provides insights into pathogen population dynamics and potential reservoirs for disease. Here we report a culture-independent study of ovine footrot (FR); a debilitating bacterial disease that has significant economic impact on sheep farming worldwide. Disease begins as an interdigital dermatitis (ID), which may then progress to separation of the hoof horn from the underlying epidermis causing severe footrot (SFR).

View Article and Find Full Text PDF

Footrot, including interdigital dermatitis, is caused by Dichelobacter nodosus cause the majority of lameness in sheep in the UK. Lame sheep often have overgrown hoof horn but recent evidence has indicated that trimming overgrown hoof horn increases recovery time, and that routine foot trimming of the flock does not reduce the prevalence or incidence of lameness. The objectives of this study were to investigate the temporal associations between hoof horn length, footrot and climate.

View Article and Find Full Text PDF

The ability to detect and diagnose Alzheimer's disease (AD) early is an ever pressing issue, and the development of markers of disease progression that are able to distinguish AD patients from normal aging and patients with alternative forms of dementia, is at the center of the issue. Protein markers of disease, or biomarkers, can be used not only to monitor the progression of AD, but also allow identification of patients suitable for potential therapy, and the response to therapy to be monitored. Cerebrospinal fluid protein biomarkers are important in this early AD diagnosis, and three such biomarkers have been extensively studied and are reviewed here.

View Article and Find Full Text PDF

Dichelobacter nodosus is a Gram-negative, anaerobic bacterium and the causal agent of footrot in sheep. Multiple locus variable number tandem repeat (VNTR) analysis (MLVA) is a portable technique that involves the identification and enumeration of polymorphic tandem repeats across the genome. The aims of this study were to develop an MLVA scheme for D.

View Article and Find Full Text PDF

Background: It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD) are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42). However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we provide evidence of a mechanism by which Aβ42 affects synaptic transmission regulating neurotransmitter release.

View Article and Find Full Text PDF

We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H) and interdigital dermatitis (ID) or virulent footrot (VFR).

View Article and Find Full Text PDF

Dichelobacter nodosus, a Gram-negative anaerobic bacterium, is the essential causative agent of footrot in sheep. Currently, depending on the clinical presentation in the field, footrot is described as benign or virulent; D. nodosus strains have also been classified as benign or virulent, but this designation is not always consistent with clinical disease.

View Article and Find Full Text PDF

In the pathogenic fungus, Candida albicans, Nrg1 down-regulates the expression of morphogenetic genes and is presumed to act as a transcriptional repressor. In contrast, Gcn4 up-regulates amino acid biosynthetic genes and is presumed to be a transcriptional activator. However, these presumptions remain to be tested directly.

View Article and Find Full Text PDF

In budding yeast, Tup1 and Ssn6/Cyc8 form a corepressor that regulates a large number of genes. This Tup1-Ssn6 corepressor appears to be conserved from yeast to man. In the pathogenic fungus Candida albicans, Tup1 regulates cellular morphogenesis, phenotypic switching, and metabolism, but the role of Ssn6 remains unclear.

View Article and Find Full Text PDF

Fungal APSES proteins regulate morphogenetic processes, including filamentation and differentiation. The human fungal pathogen Candida albicans contains two APSES proteins: the regulator Efg1p and its homologue Efh1p, described here. Overexpression of EFG1 or EFH1 led to similar phenotypes, including pseudohypha formation and opaque-white switching.

View Article and Find Full Text PDF

Protein A-tagging has become an important tool in characterization of protein-protein interactions in many systems, allowing purification of multicomponent complexes under native conditions. Here we provide a set of vectors that allow protein A-tagging in Candida albicans, through addition of the tag to open reading frames. These vectors were successfully used to generate stably tagged proteins that were functional, shown to be localized appropriately or assembled into complexes.

View Article and Find Full Text PDF