The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°).
View Article and Find Full Text PDFIn 2015/16, a marine heatwave associated with a record El Niño led to the third global mass bleaching event documented to date. This event impacted coral reefs around the world, including in Western Australia (WA), although WA reefs had largely escaped bleaching during previous strong El Niño years. Coral health surveys were conducted during the austral summer of 2016 in four bioregions along the WA coast (~17 degrees of latitude), ranging from tropical to temperate locations.
View Article and Find Full Text PDFCoral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δB, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pH and DIC for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pH range from 8.
View Article and Find Full Text PDFTo assess the viability of high latitude environments as coral refugia, we report measurements of seasonal changes in seawater parameters (temperature, light, and carbonate chemistry) together with calcification rates for two coral species, Acropora yongei and Pocillopora damicornis from the southernmost geographical limit of these species at Salmon Bay, Rottnest Island (32°S) in Western Australia. Changes in buoyant weight were normalised to colony surface areas as determined from both X-ray computed tomography and geometric estimation. Extension rates for A.
View Article and Find Full Text PDF