Publications by authors named "Claire J Mackenzie"

Article Synopsis
  • * Researchers utilized NMR fragment screening to find molecules that bind to the N-terminal domain (NTD) of HIV-CA, near the C-terminal domain (CTD) interface.
  • * X-ray crystallography helped determine how these compounds bind, allowing for the development of stronger compounds 37 and 38, which show improved binding properties with F-pK values of 5.3 and 5.4.
View Article and Find Full Text PDF

There is an urgent need for the development of new therapeutics with novel modes of action to target Gram-negative bacterial infections, due to resistance to current drugs. Previously, FabA, an enzyme in the bacterial type II fatty acid biosynthesis pathway, was identified as a potential drug target in , a Gram-negative bacteria of significant clinical concern. A chemical starting point was also identified.

View Article and Find Full Text PDF

A selection of 3,4-diaminoindoles were required for a recent drug discovery project. To this end, a 10-step synthesis was developed from 4-nitroindole. This synthesis was subsequently adapted and used to synthesize 3,5-; 3,6-; and 3,7-diaminoindoles from the corresponding 5-, 6-, or 7-nitroindole.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) affects millions of people across the world, largely in developing nations. It is fatal if left untreated and the current treatments are inadequate. As such, there is an urgent need for new, improved medicines.

View Article and Find Full Text PDF

Methionyl-tRNA synthetase (MetRS) is a chemically validated drug target in kinetoplastid parasites and . To date, all kinetoplastid MetRS inhibitors described bind in a similar way to an expanded methionine pocket and an adjacent, auxiliary pocket. In the current study, we have identified a structurally novel class of inhibitors containing a 4,6-diamino-substituted pyrazolopyrimidine core (the MetRS02 series).

View Article and Find Full Text PDF

Many drugs currently used are covalent inhibitors and irreversibly inhibit their targets. Most of these were discovered through serendipity. Covalent inhibitions can have many advantages from a pharmacokinetic perspective.

View Article and Find Full Text PDF

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments.

View Article and Find Full Text PDF

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH).

View Article and Find Full Text PDF

We report here a series of five chemically diverse scaffolds that have in vitro activities on replicating and hypoxic nonreplicating bacilli by targeting the respiratory bc1 complex in Mycobacterium tuberculosis in a strain-dependent manner. Deletion of the cytochrome bd oxidase generated a hypersusceptible mutant in which resistance was acquired by a mutation in qcrB. These results highlight the promiscuity of the bc1 complex and the risk of targeting energy metabolism with new drugs.

View Article and Find Full Text PDF