Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity.
View Article and Find Full Text PDFThe molecular composition of the plasma membrane plays a key role in mediating the susceptibility of cells to perturbations induced by toxic molecules. The pharmacological regulation of the properties of the cell membrane has therefore the potential to enhance cellular resilience to a wide variety of chemical and biological compounds. In this study, we investigate the ability of claramine, a blood-brain barrier permeable small molecule in the aminosterol class, to neutralize the toxicity of acute biological threat agents, including melittin from honeybee venom and α-hemolysin from .
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins.
View Article and Find Full Text PDFSelf-powered actuation driven by ambient humidity is of practical interest for applications such as hygroscopic artificial muscles. We demonstrate that spider dragline silk exhibits a humidity-induced torsional deformation of more than 300°/mm. When the relative humidity reaches a threshold of about 70%, the dragline silk starts to generate a large twist deformation independent of spider species.
View Article and Find Full Text PDFOsteoarthritis is associated with the irreversible degeneration of articular cartilage. Notably, in this condition, articular cartilage chondrocytes undergo phenotypic and gene expression changes that are reminiscent of their end-stage differentiation in the growth plate during skeletal development. Hedgehog (Hh) signaling regulates normal chondrocyte growth and differentiation; however, the role of Hh signaling in chondrocytes in osteoarthritis is unknown.
View Article and Find Full Text PDFAggressive fibromatosis (also called desmoid tumor) is a benign, locally invasive, soft tissue tumor composed of cells with mesenchymal characteristics. These tumors are characterized by increased levels of beta-catenin-mediated T-cell factor (TCF)-dependent transcriptional activation. We found that type 1 IFN signaling is activated in human and murine aggressive fibromatosis tumors and that the expression of associated response genes is regulated by beta-catenin.
View Article and Find Full Text PDF