Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized.
View Article and Find Full Text PDFEngagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition.
View Article and Find Full Text PDFT-cell activation induces a metabolic switch generating energy for proliferation, survival, and functions. We used noninvasive label-free two-photon fluorescence lifetime microscopy (2P-FLIM) to map the spatial and temporal dynamics of the metabolic NAD(P)H co-enzyme during T lymphocyte activation. This provides a readout of the OXPHOS and glycolysis rates at a single-cell level.
View Article and Find Full Text PDFVoltage-dependent potassium channel Kv1.3 plays a key role on T-cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T-cell line with endogenous Kv1.
View Article and Find Full Text PDFChimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR.
View Article and Find Full Text PDFTo accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous.
View Article and Find Full Text PDFLAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS).
View Article and Find Full Text PDFBackground Information: We have previously observed that in response to antigenic activation, T cells produce actin-rich protrusions that generate forces involved in T cell activation. These forces are influenced by the mechanical properties of antigen-presenting cells (APCs). However, how external forces, which can be produced by APCs, influence the dynamic of the actin protrusion remains unknown.
View Article and Find Full Text PDFhas been a launching pad for scientific careers since its inception. Here is a collection of testimonials attesting to the diversity of the scientific community it serves.
View Article and Find Full Text PDFMammalian cells developed two main migration modes. The slow mesenchymatous mode, like crawling of fibroblasts, relies on maturation of adhesion complexes and actin fiber traction, whereas the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on two-dimensional and in three-dimensional solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming.
View Article and Find Full Text PDFPalmitoylation is the reversible addition of palmitate to cysteine via a thioester linkage. The reversible nature of this modification makes it a prime candidate as a mechanism for regulating signal transduction in T-cell receptor signaling. Following stimulation of the T-cell receptor we find a number of proteins are newly palmitoylated, including those involved in vesicle-mediated transport and Ras signal transduction.
View Article and Find Full Text PDFT cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6.
View Article and Find Full Text PDFTo mount an immune response, T cells must first find rare antigens present at the surface of antigen-presenting cells (APCs). They achieve this by migrating rapidly through the crowded space of tissues and constantly sampling the surface of APCs. Upon antigen recognition, T cells decelerate and polarise towards the APC, ultimately forming a specialised interface known as the immunological synapse.
View Article and Find Full Text PDFNaive CD4 T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4 T cell plasticity.
View Article and Find Full Text PDFT-lymphocyte activation relies on the cognate recognition by the TCR of the MHC-associated peptide ligand (pMHC) presented at the surface of an antigen-presenting cell (APC). This leads to the dynamic formation of a cognate contact between the T lymphocyte and the APC: the immune synapse (IS). Engagement of the TCR by the pMHC in the synaptic zone induces a cascade of signaling events leading to phosphorylation and dephosphorylation of proteins and lipids, which ultimately shapes the response of T lymphocytes.
View Article and Find Full Text PDFThe T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse.
View Article and Find Full Text PDFThe adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined.
View Article and Find Full Text PDFIn response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell.
View Article and Find Full Text PDFT cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4 T cell functions are affected by stiffness within the physiological Young's modulus range of 0.5 kPa to 100 kPa.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process.
View Article and Find Full Text PDFT-lymphocytes in the human body routinely undergo large deformations, both passively, when going through narrow capillaries, and actively, when transmigrating across endothelial cells or squeezing through tissue. We investigate physical factors that enable and limit such deformations and explore how passive and active deformations may differ. Employing micropipette aspiration to mimic squeezing through narrow capillaries, we find that T-lymphocytes maintain a constant volume while they increase their apparent membrane surface area upon aspiration.
View Article and Find Full Text PDFProgrammed Death-1 (PD-1), an inhibitory receptor expressed by activated lymphocytes, is involved in regulating T- and B-cell responses. PD-1 and its ligands are exploited by a variety of cancers to facilitate tumor escape through PD-1-mediated functional exhaustion of effector T cells. Here, we report that PD-1 is upregulated on Natural Killer (NK) cells from patients with Kaposi sarcoma (KS).
View Article and Find Full Text PDF