Publications by authors named "Claire Gondeau"

Background: Mesenchymal stem/stromal cells (MSCs) have been widely used for their therapeutic properties in many clinical applications including osteoarthritis. Despite promising preclinical results showing the ability of MSC to reduce the clinical severity of osteoarthritis (OA) in experimental animal models, the benefits of intra-articular injection of MSC in OA patients are limited to the short term. In this regard, it is anticipated that improving the properties of MSC may collectively enhance their long-term beneficial effects on OA.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection often leads to fibrosis and chronic hepatitis, then cirrhosis and ultimately hepatocellular carcinoma (HCC). The processes of the HVC life cycle involve intimate interactions between viral and host cell proteins and lipid metabolism. However, the molecules and mechanisms involved in this tripartite interaction remain poorly understood.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome (MetS), elevating cardiovascular risks, is increasing worldwide, with no available global therapeutic options. The intake of plain, mineral or biocompatible modified waters was shown to prevent some MetS features. This study was designed to analyze, in mice fed a high fat and sucrose diet (HFSD), the effects on MetS features of the daily intake of a reverse osmosed, weakly remineralized, water (OW) and of an OW dynamized by a physical processing (ODW), compared to tap water (TW).

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response.

View Article and Find Full Text PDF

Changes in metabolism require the efflux and influx of a diverse variety of metabolites. The ABC superfamily of transporters regulates the exchange of hundreds of substrates through the impermeable cell membrane. We show here that a metabolic switch to oxidative phosphorylation (OXPHOS), either by treating cells with dichloroacetate (DCA) or by changing the available substrates, reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells.

View Article and Find Full Text PDF

Growth factors have key roles in liver physiology and pathology, particularly by promoting cell proliferation and growth. Recently, it has been shown that in mouse hepatocytes, epidermal growth factor receptor (EGFR) plays a crucial role in the activation of the xenosensor constitutive androstane receptor (CAR) by the antiepileptic drug phenobarbital. Due to the species selectivity of CAR signaling, here we investigated epidermal growth factor (EGF) role in CAR signaling in primary human hepatocytes.

View Article and Find Full Text PDF

Liver failure remains the leading cause of post-operative mortality after hepatectomy. This study investigated the effect of treatment with allogenic mesenchymal stem cells (MSCs) on survival and liver regeneration 48 hr and 7 days after 80% hepatectomy in C57Bl/6 mice. To optimize their biodistribution, MSCs were grown on acellular human amniotic membranes (HAM) and applied as a patch on the remnant liver.

View Article and Find Full Text PDF

Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Background And Aims: HCV infection is a leading risk factor of hepatocellular carcinoma (HCC). However, even after viral clearance, HCC risk remains elevated. HCV perturbs host cell signalling to maintain infection, and derailed signalling circuitry is a key driver of carcinogenesis.

View Article and Find Full Text PDF

With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs).

View Article and Find Full Text PDF

The accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is one of the most common causes of chronic liver disease and the main indication for liver transplantation worldwide. As promising specific treatments have been introduced for genotype 1, clinicians and researchers are now focusing on patients infected by non-genotype 1 HCV, particularly genotype 3. Indeed, in the golden era of direct-acting antiviral drugs, genotype 3 infections are no longer considered as easy to treat and are associated with higher risk of developing severe liver injuries, such as cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

Unlabelled: Hepatitis C virus (HCV) genotype 3a infection poses a serious health problem worldwide. A significant association has been reported between HCV genotype 3a infections and hepatic steatosis. Nevertheless, virological characterization of genotype 3a HCV is delayed due to the lack of appropriate virus cell culture systems.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1) mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes.

View Article and Find Full Text PDF

The discovery of the wide plasticity of most cell types means that it is now possible to produce virtually any cell type in vitro. This concept, developed because of the possibility of reprogramming somatic cells toward induced pluripotent stem cells, provides the opportunity to produce specialized cells that harbor multiple phenotypical traits, thus integrating genetic interindividual variability. The field of hepatology has exploited this concept, and hepatocyte-like cells can now be differentiated from induced pluripotent stem cells.

View Article and Find Full Text PDF

Objective: Adult primary human hepatocytes (PHHs) support the complete infection cycle of natural HCV from patients' sera. The molecular details underlying sera infectivity towards these cells remain largely unknown. Therefore, we sought to gain a deeper comprehension of these features in the most physiologically relevant culture system.

View Article and Find Full Text PDF

Background & Aims: The mechanisms by which fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) develop during chronic hepatitis C virus (HCV) infection are not fully understood. We previously observed that HCV core protein induced a TGF-β-dependent epithelial mesenchymal transition, a process contributing to the promotion of cell invasion and metastasis by impacting TGF-β1 signalling. Here we investigated HCV core capacity to drive increased expression of the active form of TGF-β1n transgenic mice and hepatoma cell lines.

View Article and Find Full Text PDF

The relevance of claudin-6 and claudin-9 in hepatitis C virus (HCV) entry remains elusive. We produced claudin-6- or claudin-9-specific monoclonal antibodies that inhibit HCV entry into nonhepatic cells expressing exogenous claudin-6 or claudin-9. These antibodies had no effect on HCV infection of hepatoma cells or primary hepatocytes.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. Previous studies indicate that the extract from milk thistle known as silymarin and its main component silibinin inhibit HCV infection. Here we investigated the mechanism of anti-HCV action of silymarin-derived compounds at the molecular level.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) genotype 3a is widespread worldwide, but no replication system exists for its study. We describe a subgenomic replicon system for HCV genotype 3a. We determined the consensus sequence of an HCV genome isolated from a patient, and constructed a subgenomic replicon using this clone.

View Article and Find Full Text PDF

Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes.

View Article and Find Full Text PDF

Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side".

View Article and Find Full Text PDF

L-Nucleosides comprise a new class of antiviral and anticancer agents that are converted in vivo by a cascade of kinases to pharmacologically active nucleoside triphosphates. The last step of the cascade may be catalyzed by 3-phosphoglycerate kinase (PGK), an enzyme that has low specificity for nucleoside diphosphate (NDP): NDP + 1,3-bisphosphoglycerate <--> NTP + 3-phosphoglycerate. Here we compared the kinetics of the formation of the complexes of human PGK with d- and its mirror image l-ADP and the effect of 3-phosphoglycerate (PG) on these by exploiting the fluorescence signal of PGK that occurs upon its interaction with nucleotide substrate.

View Article and Find Full Text PDF

Background Information: Application of CPPs (cell-penetrating peptides) constitutes a promising strategy for the intracellular delivery of therapeutic molecules. The non-covalent approach based on the amphipathic peptide MPG has been successfully used to improve the delivery of biologically active macromolecules, both in cellulo and in vivo, through a mechanism independent of the endosomal pathway and mediated by the membrane potential.

Results: In the present study, we have investigated the first step of the cellular uptake mechanism of MPG and shown that both MPG and MPG-cargo complexes interact with the extracellular matrix through the negatively charged heparan sulfate proteoglycans.

View Article and Find Full Text PDF