Publications by authors named "Claire Gates"

Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death.

View Article and Find Full Text PDF

We report for the first time an anticancer benefit of tirzepatide-a dual glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptor agonist-in a model of obesity and breast cancer in female mice. Long-term tirzepatide treatment induced weight loss, mitigated obesity-driven changes in circulating metabolic hormone levels, and suppressed orthotopic E0771 mammary tumor growth. Relative to tirzepatide, chronic calorie restriction, an established anticancer intervention in preclinical models, promoted even greater weight loss, systemic hormonal regulation, and tumor suppression.

View Article and Find Full Text PDF

Myxedema coma (MC) develops from a long-standing, unrecognized, or untreated hypothyroidism. This article discusses the pathophysiology, clinical manifestations, treatment, and nursing considerations for patients with MC.

View Article and Find Full Text PDF

RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling.

View Article and Find Full Text PDF

The enterobacterial common antigen (ECA), a three-sugar repeat unit polysaccharide produced by Enterobacteriaceae family members, impacts bacterial outer membrane permeability, and its biosynthesis affects the glycan landscape of the organism. ECA synthesis impacts the production of other polysaccharides by reducing the availability of shared substrates, the most notable of which is the 55-carbon polyisoprenoid bactoprenyl phosphate (BP), which serves as a carrier for the production of numerous bacterial glycans including ECA, peptidoglycan, O-antigen, and more. Here, using a combination of enzymatic synthesis and liquid chromatography-mass spectrometry (LC-MS) analysis of bacterial lysates, we provide biochemical evidence for the effect on endogenous polyisoprenoid pools from cell culture that arises from glycan pathway disruption.

View Article and Find Full Text PDF

The protective surfaces of bacteria are comprised of polysaccharides and are involved in host invasion and colonization, host immune system evasion, and antibacterial resistance. A major barrier to our fundamental understanding of these complex surface polysaccharides lies in the tremendous diversity in glycan composition among bacterial species. The polyisoprenoid bactoprenyl phosphate (or undecaprenyl phosphate) is an essential lipid carrier necessary for early stages of glycopolymer assembly.

View Article and Find Full Text PDF