Publications by authors named "Claire Fearnley"

Calcium (Ca(2+)) is a critical regulator of cardiac myocyte function. Principally, Ca(2+) is the link between the electrical signals that pervade the heart and contraction of the myocytes to propel blood. In addition, Ca(2+) controls numerous other myocyte activities, including gene transcription.

View Article and Find Full Text PDF

Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription.

View Article and Find Full Text PDF

Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction.

View Article and Find Full Text PDF