Publications by authors named "Claire Farrington Rock"

The short-rib polydactyly (SRP) syndromes are a heterogeneous group of perinatal lethal skeletal disorders with polydactyly and multisystem organ abnormalities. Homozygosity by descent mapping in a consanguineous SRP family identified a genomic region that contained DYNC2H1, a cytoplasmic dynein involved in retrograde transport in the cilium. Affected individuals in the family were homozygous for an exon 12 missense mutation that predicted the amino acid substitution R587C.

View Article and Find Full Text PDF

We report on a 5-year-old boy with spondylocarpotarsal synostosis (SCT) syndrome who presents with disproportionate short stature, thoracic scoliosis, pes planus, dental enamel hypoplasia, unilateral conductive hearing loss and mild facial dysmorphisms. Radiographs showed abnormal segmentation of the spine with block vertebrae and carpal synostosis. In addition to the typical phenotype of SCT syndrome, he showed pronounced delay of carpal bone age and bilateral epiphyseal dysplasia of the proximal femora.

View Article and Find Full Text PDF

HtrA1 is a secreted multidomain protein with serine protease activity. In light of increasing evidence implicating this protein in the regulation of skeletal development and pathology, we investigated the role of HtrA1 in osteoblast mineralization and identified domains essential for this activity. We demonstrate increased HtrA1 expression in differentiating 2T3 osteoblasts prior to the appearance of mineralization.

View Article and Find Full Text PDF

Spondylocarpotarsal synostosis syndrome (SCT) is an autosomal recessive disease that is characterized by short stature, and fusions of the vertebrae and carpal and tarsal bones. SCT results from homozygosity or compound heterozygosity for nonsense mutations in FLNB. FLNB encodes filamin B, a multifunctional cytoplasmic protein that plays a critical role in skeletal development.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) inhibit chondrocyte proliferation via the Erk MAP kinase pathway. Here, we explored the role of protein kinase C in FGF signaling in chondrocytes. Erk activity in FGF2-treated RCS (rat chondrosarcoma) chondrocytes or human primary chondrocytes was abolished by the protein kinase C inhibitor bisindolylmaleimide I (Bis I).

View Article and Find Full Text PDF

Background: Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied.

View Article and Find Full Text PDF

The filamins are a family of cytoplasmic proteins that bind to and organize actin filaments, link membrane proteins to the cytoskeleton, and provide a scaffold for signaling molecules. Mutations in the gene encoding filamin B (FLNB) cause a spectrum of osteochondrodysplasias, including atelosteogenesis type I (AOI) and atelosteogenesis type III (AOIII). AOI and AOIII are autosomal dominant lethal skeletal dysplasias characterized by overlapping clinical findings that include vertebral abnormalities, disharmonious skeletal maturation, hypoplastic long bones, and joint dislocations.

View Article and Find Full Text PDF

Objective: Vascular calcification, with its increasing clinical sequelae, presents an important and unresolved dilemma in cardiac and vascular practice. We aimed to identify molecules involved in this process to develop strategies for treatment or prevention.

Methods And Results: Using subtractive hybridization, a novel cDNA, designated vascular calcification-associated factor (VCAF), has been isolated from a bovine retinal pericyte cDNA library generated during the differentiation and mineralization of these cells in vitro.

View Article and Find Full Text PDF

The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain.

View Article and Find Full Text PDF