TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive.
View Article and Find Full Text PDFTrim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away.
View Article and Find Full Text PDFThe HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution.
View Article and Find Full Text PDFThe cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes.
View Article and Find Full Text PDFThe HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP, which strengthens capsid hexamers by almost 10°C.
View Article and Find Full Text PDFHemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S.
View Article and Find Full Text PDFTripartite motif (TRIM) 21 is a cytosolic antibody receptor that neutralizes antibody-coated viruses that penetrate the cell and simultaneously activates innate immunity. Here we show that the conjugation of TRIM21 with K63-linked ubiquitin (Ub-(63)Ub) catalyzed by the sequential activity of nonredundant E2 Ub enzymes is required for its dual antiviral functions. TRIM21 is first labeled with monoubiquitin (monoUb) by the E2 Ube2W.
View Article and Find Full Text PDFStaphylococcus aureus is a common and serious cause of infection in humans. The bacterium expresses a cell-surface receptor that binds to, and strips haem from, human haemoglobin (Hb). The binding interface has previously been identified; however, the structural changes that promote haem release from haemoglobin were unknown.
View Article and Find Full Text PDFStaphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain.
View Article and Find Full Text PDFStaphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria.
View Article and Find Full Text PDFStaphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin.
View Article and Find Full Text PDFα-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
March 2013
Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe.
View Article and Find Full Text PDFStaphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S.
View Article and Find Full Text PDFPathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway.
View Article and Find Full Text PDFTo produce functional Hb (haemoglobin), nascent α-globin (αo) and β-globin (βo) chains must each bind a single haem molecule (to form αh and βh) and interact together to form heterodimers. The precise sequence of binding events is unknown, and it has been suggested that additional factors might enhance the efficiency of Hb folding. AHSP (α-haemoglobin-stabilizing protein) has been shown previously to bind αh and regulate redox activity of the haem iron.
View Article and Find Full Text PDF