Publications by authors named "Claire E Terhune"

In primates and other mammals, the capacity to generate a wide maximum jaw gape is an important performance variable related to both feeding and nonfeeding oral behaviors, such as canine gape display and clearing the canines for use as weapons during aggressive encounters. Across sexually dimorphic catarrhine primates, gape is significantly correlated with canine height and with musculoskeletal features that facilitate wide gapes. Given the importance of canine gape behaviors in males as part of intrasexual competition for females, functional relationships between gape, canine height, and musculoskeletal morphology can be predicted to differ between the sexes.

View Article and Find Full Text PDF

The mammalian order Primates is known for widespread sexual dimorphism in size and phenotype. Despite repeated speculation that primate sexual size dimorphism either facilitates or is in part driven by functional differences in how males and females interact with their environments, few studies have directly assessed the influence of sexual dimorphism on performance traits. Here, we use a theoretical morphology framework to show that sexual dimorphism in primate crania is associated with divergent biomechanical performance traits.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares craniodental lesions across six species of cercopithecoid primates to understand the prevalence and patterns of these lesions related to their social and ecological factors.
  • Findings reveal that male Papio anubis (baboons) exhibited higher lesion rates, particularly associated with anterior teeth and trauma, while some lesion types co-occurred in species like Macaca.
  • The research suggests that craniodental lesions in primates may be influenced by social dynamics, dietary factors, and potentially impact their chewing mechanics, drawing parallels to issues seen in humans.
View Article and Find Full Text PDF

Objectives: Cortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross-sectional properties throughout capuchin ontogeny and compare captive versus wild, semi-provisioned groups.

View Article and Find Full Text PDF

The superfamily Cercopithecoidea had a broad spatial distribution and occupied a wide variety of habitats across Europe from the Late Miocene until the Middle Pleistocene. Cercopithecines, such as macaques, showed more flexibility in habitat preferences, whereas colobines tended to be more sensitive to environmental differences. In Romania, only a few Pliocene and Pleistocene fossil sites have yielded primate remains.

View Article and Find Full Text PDF

In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods.

View Article and Find Full Text PDF

The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. Unlike Cebus, Sapajus have a mechanically challenging diet and behavioral observations of juvenile Sapajus suggest these foods are exploited early in development.

View Article and Find Full Text PDF

Skeletal muscle fibre architecture provides important insights into performance of vertebrate locomotor and feeding behaviours. Chemical digestion and in situ sectioning of muscle bellies along their lengths to expose fibres, fibre orientation and intramuscular tendon, are two classical methods for estimating architectural variables such as fibre length (L) and physiological cross-sectional area (PCSA). It has recently been proposed that L estimates are systematically shorter and hence less accurate using in situ sectioning.

View Article and Find Full Text PDF

As natural disasters become more frequent due to climate change, understanding the biological impact of these ecological catastrophes on wild populations becomes increasingly pertinent. Fluctuating asymmetry (FA), or random deviations from bilateral symmetry, is reflective of developmental instability and has long been positively associated with increases in environmental stress. This study investigates craniofacial FA in a population of free-ranging rhesus macaques () that has experienced multiple Category 3 hurricanes since the colony's inception on Cayo Santiago, including 275 individuals from ages 9 months to 31 years (F = 154; M = 121).

View Article and Find Full Text PDF

Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length-tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp.

View Article and Find Full Text PDF

Objectives: Craniofacial fluctuating asymmetry (FA) refers to the random deviations from symmetry exhibited across the craniofacial complex and can be used as a measure of developmental instability for organisms with bilateral symmetry. This article addresses the lack of data on craniofacial FA in nonhuman primates by analyzing FA magnitude and variation in chimpanzees, gorillas, and macaques. We offer a preliminary investigation into how FA, as a proxy for developmental instability, varies within and among nonhuman primates.

View Article and Find Full Text PDF

The temporomandibular joint is the direct interface between the mandible and the cranium and is critical for transmitting joint reaction forces and determining mandibular range of motion. As a consequence, understanding variation in the morphology of this joint and how it relates to other aspects of craniofacial form is important for better understanding masticatory function. Here, we present a detailed three-dimensional (3D) geometric morphometric analysis of the cranial component of this joint, the glenoid fossa, across a sample of 17 anthropoid primates, and we evaluate covariation between the glenoid and the cranium and mandible.

View Article and Find Full Text PDF

Obtaining coordinate data for geometric morphometric studies often involves the sampling of dry skeletal specimens from museum collections. But many specimens exhibit damage and/or pathologic conditions. Such specimens can be considered inadequate for the analyses of shape and are excluded from study.

View Article and Find Full Text PDF

Although there is considerable evidence that bone responds to the loading environment in which it develops, few analyses have examined phenotypic plasticity or bone functional adaptation in the masticatory apparatus. Prior work suggests that masticatory morphology is sensitive to differences in food mechanical properties during development; however, the importance of the timing/duration of loading and variation in naturalistic diets is less clear. Here, we examined microstructural and macrostructural differences in the mandibular condyle in four groups of white rabbits () raised for a year on diets that varied in mechanical properties and timing of the introduction of mechanically challenging foods, simulating seasonal variation in diet.

View Article and Find Full Text PDF

Background: Within-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses - particularly those produced through mastication of tough food items - may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, allometry may not dominate within-species shape variation, even if it is a driver of evolutionary shape divergence; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.

View Article and Find Full Text PDF

With increased tablet ownership in the United States comes increased levels of neck flexion compared to desktop or laptop computer use, and these neck postures have been linked to increases in neck pain. Importantly, tablet viewing postures can be achieved in multiple ways and could be determined by the morphology of the individual and/or other extraneous factors. In this study, we aim to preliminarily evaluate how neck postures vary during tablet use among individuals and link this variation to other factors such as sex, height, weight, presence/absence of temporomandibular joint disorder (TMD), and morphology of the head and neck.

View Article and Find Full Text PDF

Objective: Determine sarcomere length (L) operating ranges of the superficial masseter and temporalis in vitro in a macaque model and examine the impact of position-dependent variation on L and architectural estimates of muscle function (i.e., fiber length, PCSA) before and after L-normalization.

View Article and Find Full Text PDF

As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height.

View Article and Find Full Text PDF

Numerous studies have sought to link craniofacial morphology with behavioral ecology in primates. Extant hard-object feeders have been of particular interest because of their potential to inform our understanding about the diets of early fossil hominins. Sooty mangabeys (Cercocebus atys) are hard-object feeders that frequently generate what have been described as audibly powerful bites at wide jaw gapes to process materially stiff and hard seeds.

View Article and Find Full Text PDF

The location of the axis of rotation (AoR) of the mandible was quantified using the helical axis (HA) in eight individuals from three species of non-human primates: Papio anubis, Cebus apella, and Macaca mulatta. These data were used to test three hypotheses regarding the functional significance of anteroposterior condylar translation - an AoR located inferior to the temporomandibular joint (TMJ) - during chewing: minimizing impingement of the gonial region on cervical soft tissue structures during jaw opening; avoiding stretching of the inferior alveolar neurovascular bundle (IANB); and increasing jaw-elevator muscle torques. The results reveal that the HA is located near the occlusal plane in Papio and Cebus, but closer to the condyle in Macaca; is located anteroinferior to the TMJ during both opening and closing in Papio, as well as during opening in Macaca and Cebus; and varies in its location during closing in Macaca and Cebus.

View Article and Find Full Text PDF

Masticatory morphology in primates is likely under strong selective pressure to maximize feeding efficiency while simultaneously minimizing the occurrence of injury or pathology. As a result, masticatory shape, including aspects of temporomandibular joint (TMJ) morphology, varies widely across primates in relation to feeding behavior and body size. This study examines patterns of allometry in the TMJ of anthropoid primates, with the specific goal of evaluating how allometric patterns may reflect variation in loading and/or range of motion at this joint.

View Article and Find Full Text PDF

Objectives: This study compares two- and three-dimensional morphometric data to determine the extent to which intra- and interobserver and intermethod error influence the outcomes of statistical analyses.

Materials And Methods: Data were collected five times for each method and observer on 14 anthropoid crania using calipers, a MicroScribe, and 3D models created from NextEngine and microCT scans. ANOVA models were used to examine variance in the linear data at the level of genus, species, specimen, observer, method, and trial.

View Article and Find Full Text PDF

Objectives: Trabecular microstructure of limb bone epiphyses has been used to elucidate the relationship between skeletal form and behavior among mammals. Such studies have often relied on the analysis of a single volume of interest (VOI). Here we present a method for evaluating variation in bone microstructure across articular surfaces by leveraging sliding semilandmarks.

View Article and Find Full Text PDF

The fossils from Malapa cave, South Africa, attributed to Australopithecus sediba, include two partial skeletons-MH1, a subadult, and MH2, an adult. Previous research noted differences in the mandibular rami of these individuals. This study tests three hypotheses that could explain these differences.

View Article and Find Full Text PDF

Maximum jaw gape is a performance variable related to feeding and non-feeding oral behaviors, such as canine gape displays, and is influenced by several factors including jaw-muscle fiber architecture, muscle position on the skull, and jaw morphology. Maximum gape, jaw length, and canine height are strongly correlated across catarrhine primates, but relationships between gape and other aspects of masticatory apparatus morphology are less clear. We examine the effects of jaw-adductor fiber architecture, jaw-muscle leverage, and jaw form on gape in an intraspecific sample of sexually dimorphic crab-eating macaques (Macaca fascicularis).

View Article and Find Full Text PDF