Publications by authors named "Claire E O'Leary"

Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 niche fibroblasts.

View Article and Find Full Text PDF

Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease.

View Article and Find Full Text PDF

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1.

View Article and Find Full Text PDF

Tuft cells are sentinel chemosensory cells that monitor the lumen of hollow organs for noxious or infectious stimuli and respond with disease- and tissue-specific effectors. The discovery of critical tuft cell functions in intestinal type 2 immune responses and airway defense has sparked interest in the formation and function of this architecturally unique cell type. Recent advances in single-cell transcriptomics and computational biology allow for new insights into the genetics and environmental cues underlying tuft cell formation and maturation.

View Article and Find Full Text PDF

Inflammation and dysfunction of the extrahepatic biliary tree are common causes of human pathology, including gallstones and cholangiocarcinoma. Despite this, we know little about the local regulation of biliary inflammation. Tuft cells, rare sensory epithelial cells, are particularly prevalent in the mucosa of the gallbladder and extrahepatic bile ducts.

View Article and Find Full Text PDF

Recent findings position tuft cells as key mediators of intestinal immunity through their production of the cytokine interleukin (IL)-25 and activation of group 2 innate lymphoid cells (ILC2s). Though tuft cells are found in numerous epithelial tissues, their phenotype and function have been best characterized in the small intestine, where robust in vivo techniques have enabled the dissection of their cellular function, ontogeny, and key signaling pathways. We describe methods for the identification, quantification, and manipulation of tuft cells, focusing on analysis of ILC2s as a readout of tuft cell function.

View Article and Find Full Text PDF

Ubiquitination is a crucial component of many immune processes. While ubiquitin-mediated degradation is essential to T cell activation via T cell receptor signaling, the specific E3 ligases and substrates involved are not well-understood. Here, we describe a strategy integrating RNA, protein, and posttranslational modification datasets to identify targets of ubiquitin-mediated degradation.

View Article and Find Full Text PDF

Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds.

View Article and Find Full Text PDF

Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4 T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation.

View Article and Find Full Text PDF

Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits.

View Article and Find Full Text PDF

The small intestinal tuft cell-ILC2 circuit mediates epithelial responses to intestinal helminths and protists by tuft cell chemosensory-like sensing and IL-25-mediated activation of lamina propria ILC2s. Small intestine ILC2s constitutively express the IL-25 receptor, which is negatively regulated by A20 (Tnfaip3). A20 deficiency in ILC2s spontaneously triggers the circuit and, unexpectedly, promotes adaptive small-intestinal lengthening and remodeling.

View Article and Find Full Text PDF

Foxp3 T regulatory (T) cells suppress immune cell activation and establish normal immune homeostasis. How T cells maintain their identity is not completely understood. Here we show that Ndfip1, a coactivator of Nedd4-family E3 ubiquitin ligases, is required for T cell stability and function.

View Article and Find Full Text PDF

Group 2 innate lymphoid cells (ILC2s) and type 2 helper T cells (Th2 cells) are the primary source of interleukin 5 (IL-5) and IL-13 during type 2 (allergic) inflammation in the lung. In Th2 cells, T cell receptor (TCR) signaling activates the transcription factors nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB), and activator protein 1 (AP-1) to induce type 2 cytokines. ILC2s lack a TCR and respond instead to locally produced cytokines such as IL-33.

View Article and Find Full Text PDF

Nedd4 family E3 ubiquitin ligases have been shown to restrict T-cell function and impact T-cell differentiation. We show here that Ndfip1 and Ndfip2, activators of Nedd4 family ligases, together limit accumulation and function of effector CD4+ T cells. Using a three-part proteomics approach in primary T cells, we identify stabilization of Jak1 in Ndfip1/2-deficient T cells stimulated through the TCR.

View Article and Find Full Text PDF

Neutrophils are important innate immune cells involved in microbial clearance at the sites of infection. However, their role in cancer development is unclear. We hypothesized that neutrophils mediate antitumor effects in early tumorigenesis.

View Article and Find Full Text PDF

T cell receptor (TCR) signaling must be precisely tuned to limit collateral damage and prevent reactivity to self, while still allowing robust protective immune responses that control pathogen invasion. One process that can be used to promote, modify, or terminate TCR signaling is ubiquitylation. During ubiquitylation, ubiquitin is covalently attached to target proteins through a multistep process, in which E3 ubiquitin ligases promote the formation of ubiquitin chains on selected substrates.

View Article and Find Full Text PDF

Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear.

View Article and Find Full Text PDF

Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother's microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) genetics dictate adaptive cellular immune responses, making robust MHC genotyping methods essential for studies of infectious disease, vaccine development and transplantation. Nonhuman primates provide essential preclinical models for these areas of biomedical research. Unfortunately, given the unparalleled complexity of macaque MHCs, existing methodologies are inadequate for MHC typing of these key model animals.

View Article and Find Full Text PDF

Pig-tailed macaques (Macaca nemestrina) provide important animal models in biomedical research, but utility of this species for HIV and other disease pathogenesis research is limited by incomplete knowledge of major histocompatibility complex (MHC) class I genetics. Here, we describe comprehensive MHC class I genotyping of 24 pig-tailed macaques, using pyrosequencing to evaluate a 367- bp complementary DNA (cDNA)-PCR amplicon spanning the highly polymorphic peptide-binding region of MHC class I transcripts. We detected 29 previously described Mane transcripts, 90 novel class I sequences, and eight shared MHC class IB haplotypes.

View Article and Find Full Text PDF