Enveloped virus fate in the environment is not well understood; there are no quantitative data on sunlight inactivation of enveloped viruses in water. Herein, we measured the sunlight inactivation of two enveloped viruses (Phi6 and murine hepatitis virus, MHV) and a nonenveloped virus (MS2) over time in clear water with simulated sunlight exposure. We attenuated UV sunlight wavelengths using long-pass 50% cutoff filters at 280, 305, and 320 nm.
View Article and Find Full Text PDFBackground: Handwashing is an important intervention which can reduce indirect disease transmission, however soap and water for handwashing purposes is not available in some low-resource regions. When handwashing with soap and water is not possible, individuals may use alternatives such as the Supertowel (a microfiber towel with an antimicrobial coating). Testing of viral inactivation as a result of antimicrobial treatment on the Supertowel, however, has been limited.
View Article and Find Full Text PDFRespiratory and diarrheal diseases are leading causes of death worldwide. Handwashing may reduce disease; however, recommended methods (soap and water for 20 seconds) are not always possible, particularly in low-resource settings. The aim of this study is to evaluate handwashing when recommended methods are not feasible, including washing with water only, washing with soapy water, washing for a short duration, using alcohol-based hand sanitizer (ABHS), and cleaning hands with towels.
View Article and Find Full Text PDFThe WHO recommends handwashing with soap and water for 20-40 seconds. In settings where soap is not available, ash or sand is used for handwashing, yet their efficacy as handwashing materials is underresearched. The purpose of this study was to quantify the removal of viruses using ash and sand as handwashing agents, and compare their efficacy to commonly recommended handwashing methods.
View Article and Find Full Text PDFBrown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction.
View Article and Find Full Text PDFUrban runoff is one of the greatest sources of microbial pollution to surface waters. Biofilters can limit the impact of stormwater runoff on surface water quality by diverting runoff from receiving waters. However, our understanding of how biofilter design choices, including the addition of vegetation and geomedia, may impact the removal of pathogens is lacking.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2021
Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic).
View Article and Find Full Text PDFAppl Environ Microbiol
November 2018
Brown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs).
View Article and Find Full Text PDFFever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a clinically recognized epileptic encephalopathy of unknown aetiology. Presentation in previously healthy children is characterized by febrile status epilepticus. A pharmacoresistant epilepsy ensues, occurring in parallel with dramatic cognitive decline and behavioural difficulties.
View Article and Find Full Text PDF