Publications by authors named "Claire Deeb"

The optical and electrical characteristics of electrically-driven nanogap antennas are extremely sensitive to the nanogap region where the fields are tightly confined and electrons and photons can interplay. Upon injecting electrons in the nanogap, a conductance channel opens between the metal surfaces modifying the plasmon charge distribution and therefore inducing an electrical tuning of the gap plasmon resonance. Electron tunneling across the nanogap can be harnessed to induce broadband photon emission with boosted quantum efficiency.

View Article and Find Full Text PDF

Nanogap antennas are compelling structures for squeezing light into ultrasmall volumes. However, when gaps are shrunk to the nanometer scale, the mode losses dramatically increase. In this Letter, we report the conditions of critical coupling between the arrays of nanogap resonant metal-insulator-metal (MIM) antennas and free space.

View Article and Find Full Text PDF

Physical properties of nanocrystals self-assembled into 3D superlattices called supracrystals are highly specific with unexpected behavior. The best example to support such a claim was given through STM/STS experiments at low temperature of very thick supracrystals (around 1000 layers) where it was possible to image the surpracrystal surface and study their electronic properties. From previous studies, we know the optical properties of Ag nanocrystals self-assembled in a hexagonal network two-dimensional (2D) or by forming small 3D superlattices (from around 2 to 7 layers) are governed by dipolar interactions.

View Article and Find Full Text PDF

Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.

View Article and Find Full Text PDF

Plasmon lasers are a new class of coherent light sources that use metals for light localization and amplification. Access to this confined light that couples to the oscillating electrons of metal enables reducing the physical size and mode volume of the laser much below the diffraction limit. The race to demonstrate new plasmon nanolasers has enabled considerable progress over the last several years regarding nanocavity design, operating temperature, pumping conditions, and material efficiency of both plasmonic nanocavity and gain medium.

View Article and Find Full Text PDF

Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size.

View Article and Find Full Text PDF

Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasing based on arrays of gold nanoparticles and liquid gain materials.

View Article and Find Full Text PDF

This Article interrogates the mechanisms responsible for nanoscale photopolymerization induced by confined and enhanced electromagnetic fields. Surface plasmon dipolar resonance of individual Ag nanoparticles was used as an optical near-field source to locally trigger the reaction of a photopolymerizable formulation. Laser excitation of the nanoparticles embedded in the formulation reproducibly generates polymer features with typical dimensions ranging from 2 nm to a few tens of nanometer.

View Article and Find Full Text PDF

We report on the nanoscale optical characterization of gold nanorods irradiated out of their plasmonic resonance. Our approach is based on the reticulation of a photopolymerizable formulation locally triggered by enhanced electromagnetic fields. The tiny local field enhancement stems from the surface polarization charges associated with the electric field discontinuity at the metal/dielectric interface.

View Article and Find Full Text PDF

We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor.

View Article and Find Full Text PDF