Publications by authors named "Claire Chretien"

Inflammatory Bowel Diseases (IDB) are chronic disorders characterized by gut inflammation, mucosal damage, increased epithelial permeability and altered mucus layer. No accurate in vitro model exists to simulate these characteristics. In this context, drug development for IBD or intestinal inflammation requires in vivo evaluations to verify treatments efficacy.

View Article and Find Full Text PDF

Pulmonary embolism is a critical medical condition and can lead to cardiovascular arrest or death if left untreated. Pulmonary delivery of an anti-coagulant therapeutic could provide a locally limited and efficient therapy, moreover combined with a potentially fast onset of the therapeutic effect that is demanded in emergency situations. Rivaroxaban (riva) was formulated as an inhalable dry powder that can be administered directly to the lungs in order to reach high local drug doses.

View Article and Find Full Text PDF

Spray-freeze-drying (SFD) processes are usually using aqueous solvent systems, which however, exclude the use of SFD for poorly water-soluble drugs/excipients. Here, we evaluated dimethyl sulfoxide for its suitability in formulating SFD particles (lyospheres®). Rivaroxaban was spray-freeze-dried from DMSO solutions containing polyvinyl pyrrolidone (PVP; Kollidon® 25), vinylpyrrolidone-vinyl acetate copolymer (PVP-VA; Kollidon® VA64) or polyvinyl alcohol 4-88 (PVA) forming porous lyospheres® (median particle size 250 to 350 µm).

View Article and Find Full Text PDF

Poorly water-soluble drugs are still a major challenge to overcome in order to achieve sufficiently high oral bioavailability. Spray freeze drying (SFD) is proposed here as an alternative for the preparation of amorphous, free-flowing porous celecoxib spheres for enhanced drug dissolution. Tertiary butyl alcohol solutions of celecoxib + excipient (povidone, hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Soluplus®) at variable ratios were sprayed into a cooled spray tower, followed by vacuum freeze drying.

View Article and Find Full Text PDF

Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time.

View Article and Find Full Text PDF

Amorphous silica nanoparticles are widely used as pharmaceutical excipients and food additive (E551). Despite the potential human health risks of mineral nanoparticles, very few data regarding their oral toxicity are currently available. This study aims to evaluate and to understand the interactions of silica particles at 1 and 10 mg mL with the intestinal barrier using a Caco-2 monolayer and a Caco-2/HT29-MTX co-culture.

View Article and Find Full Text PDF

The oral of drugs is often limited due to the presence of the P-glycoprotein, an efflux pump strongly expressed on the luminal side of the intestinal barrier. In an attempt to circumvent drug efflux, strategies consisting in the coadministration of drugs with surface-active agents have been found to be promising. In this context, the role of saponins on the intestinal permeability of a P-glycoprotein substrate was investigated.

View Article and Find Full Text PDF