NMR is a central tool in the field of metabolomics, thanks to its ability to provide valuable structural and quantitative information with high precision. Most NMR-based metabolomics studies rely on 1D H detection, which is heavily limited by strong peak overlap. C NMR benefits from a wider spectral dispersion and narrower signal line width but is barely used in metabolomics due to its low sensitivity.
View Article and Find Full Text PDFThis study explores the potential of H-NMR spectroscopy-based metabolic profiling in various biofluids as a diagnostic and predictive modality to assess disease severity in individuals with 5q spinal muscular atrophy. A total of 213 biosamples (urine, plasma, and CSF) from 153 treatment-naïve patients with SMA across five German centers were analyzed using H-NMR spectroscopy. Prediction models were developed using machine learning algorithms which enabled the patients with SMA to be grouped according to disease severity.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the individual progression of the disease in a quantitative manner.
View Article and Find Full Text PDFDespite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose in the early stages and lacks reliable biomarkers. The scope of this project was to establish quantitative nuclear magnetic resonance (NMR) spectroscopy to comprehensively study blood serum alterations in PDAC patients. Serum samples from 34 PDAC patients obtained before and after pancreatectomy as well as 83 age- and sex-matched control samples from healthy donors were analyzed with diagnostics research (IVDr) proton NMR spectroscopy at 600 MHz.
View Article and Find Full Text PDFObjectives: The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata.
View Article and Find Full Text PDFBackground: Diagnostic approaches like the nuclear magnetic resonance spectroscopy (NMR) based quantification of metabolites, lipoproteins, and inflammation markers has helped to identify typical alterations in the blood serum of COVID-19 patients. However, confounders such as sex, and comorbidities, which strongly influence the metabolome, were often not considered. Therefore, the aim of this NMR study was to consider sex, as well as arterial hypertension (AHT), when investigating COVID-19-positive serum samples in a large age-and sex matched cohort.
View Article and Find Full Text PDFLow-field (LF) benchtop NMR is a new family of instruments available on the market, promising for fast metabolic fingerprinting and targeted quantification of specific metabolites despite a lack of sensitivity and resolution with respect to high-field (HF) instruments. In the present study, we evaluated the possibility to use the urinary metabolic fingerprint generated using a benchtop LF NMR instrument for an early detection of sepsis in preterm newborns, considering a cohort of neonates previously investigated by untargeted metabolomics based on Mass Spectrometry (MS). The classifier obtained behaved similarly to that based on MS, even if different classes of metabolites were taken into account.
View Article and Find Full Text PDFPhenylketonuria (PKU) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase gene. Depending on the severity of the genetic mutation, medical treatment, and patient dietary management, elevated phenylalanine (Phe) may occur in blood and brain tissues. Research has recently shown that high Phe not only impacts the central nervous system, but also other organ systems (e.
View Article and Find Full Text PDFBackground: Deep metabolomic, proteomic and immunologic phenotyping of patients suffering from an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have matched a wide diversity of clinical symptoms with potential biomarkers for coronavirus disease 2019 (COVID-19). Several studies have described the role of small as well as complex molecules such as metabolites, cytokines, chemokines and lipoproteins during infection and in recovered patients. In fact, after an acute SARS-CoV-2 viral infection almost 10-20% of patients experience persistent symptoms post 12 weeks of recovery defined as long-term COVID-19 syndrome (LTCS) or long post-acute COVID-19 syndrome (PACS).
View Article and Find Full Text PDFTraditional diagnosis is based on histology or clinical-stage classification which provides no information on tumor metabolism and inflammation, which, however, are both hallmarks of cancer and are directly associated with prognosis and severity. This project was an exploratory approach to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) for identifying additional useful serum markers and stratifying ovarian cancer patients in the future. This project included 201 serum samples of which 50 were received from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively.
View Article and Find Full Text PDFThe complex manifestations of COVID-19 are still not fully decoded on the molecular level. We combined quantitative the nuclear magnetic resonance (NMR) spectroscopy serum analysis of metabolites, lipoproteins and inflammation markers with clinical parameters and a targeted cytokine panel to characterize COVID-19 in a large (534 patient samples, 305 controls) outpatient cohort of recently tested PCR-positive patients. The COVID-19 cohort consisted of patients who were predominantly in the initial phase of the disease and mostly exhibited a milder disease course.
View Article and Find Full Text PDFAfter SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513).
View Article and Find Full Text PDFThere are about 1500 genetic metabolic diseases. A small number of treatable diseases are diagnosed by newborn screening programs, which are continually being developed. However, most diseases can only be diagnosed based on clinical symptoms or metabolic findings.
View Article and Find Full Text PDFBackground: The aim of this study was to gain an increased understanding of the aetiology of breast cancer, by investigating possible associations between serum lipoprotein subfractions and metabolites and the long-term risk of developing the disease.
Methods: From a cohort of 65,200 participants within the Trøndelag Health Study (HUNT study), we identified all women who developed breast cancer within a 22-year follow-up period. Using nuclear magnetic resonance (NMR) spectroscopy, 28 metabolites and 89 lipoprotein subfractions were quantified from prediagnostic serum samples of future breast cancer patients and matching controls (n = 1199 case-control pairs).
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a deficiency of the arylsulfatase A (ARSA). ARSA deficiency leads to an accumulation of sulfatides primarily in the nervous system ultimately causing demyelination. With evolving therapeutic options, there is an increasing need for indicators to evaluate disease progression.
View Article and Find Full Text PDFBackground And Aims: Assessment of comprehensive lipoprotein subclass profiles in adolescents and their relation to vascular disease may enhance our understanding of the development of dyslipidemia in early life and inform early vascular prevention.
Methods: Nuclear magnetic resonance was used to measure lipoprotein profiles, including lipids (cholesterol, free cholesterol, triglycerides, phospholipids) and apolipoproteins (apoB-100, apoA1, apoA2) of 17 lipoprotein subclasses (from least dense to densest: VLDL-1 to -6, IDL, LDL-1 to -6, HDL-1 to -4) in n = 1776 14- to 19-year olds (56.6% female) and n = 3027 25- to 85-year olds (51.
Background: 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for SMA imprecise and difficult.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS) is a multimorbid long-term condition without consensual medical definition and a diagnostic based on compatible symptomatology. Here we have investigated the molecular signature of MetS in urine.
Methods: We used NMR-based metabolomics to investigate a European cohort including urine samples from 11,754 individuals (18-75 years old, 41% females), designed to populate all the intermediate conditions in MetS, from subjects without any risk factor up to individuals with developed MetS (4-5%, depending on the definition).
Background: Phenylketonuria (PKU; OMIM#261600) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene resulting in high phenylalanine (Phe) in blood and brain. If not treated early this results in intellectual disability, behavioral and psychiatric problems, microcephaly, motor deficits, eczematous rash, autism, seizures, and developmental problems. There is a controversial discussion of whether patients with PKU have an additional risk for atherosclerosis due to interference of Phe with cholesterol synthesis and LDL-cholesterol regulation.
View Article and Find Full Text PDFInborn errors of metabolism (IEMs) are rare diseases produced by the accumulation of abnormal amounts of metabolites, toxic to the newborn. When not detected on time, they can lead to irreversible physiological and psychological sequels or even demise. Metabolomics has emerged as an efficient and powerful tool for IEM detection in newborns, children, and adults with late onset.
View Article and Find Full Text PDFMetabolic profiling of biofluids by nuclear magnetic resonance (NMR) spectroscopy serves as an important tool in disease characterization, and its accuracy largely depends on the quality of samples. We aimed to explore possible effects of repeated freeze-thaw cycles (FTCs) on concentrations of lipoprotein parameters in serum and metabolite concentrations in serum and urine samples. After one to five FTCs, serum and urine samples (= 20) were analyzed by NMR spectroscopy, and 112 lipoprotein parameters, 20 serum metabolites, and 35 urine metabolites were quantified by a commercial analytical platform.
View Article and Find Full Text PDFWe report an extensive 600 MHz NMR trial of quantitative lipoprotein and small-molecule measurements in human blood serum and plasma. Five centers with eleven 600 MHz NMR spectrometers were used to analyze 98 samples including 20 quality controls (QCs), 37 commercially sourced, paired serum and plasma samples, and two National Institute of Science and Technology (NIST) reference material 1951c replicates. Samples were analyzed using rigorous protocols for sample preparation and experimental acquisition.
View Article and Find Full Text PDF