Isatuximab is an approved anti-CD38 monoclonal antibody with multiple antitumor modes of action. An exposure-response (E-R) analysis using data from patients with relapsed/refractory multiple myeloma (RRMM) enrolled in a phase Ib clinical study who received isatuximab at doses from 5 to 20 mg/kg weekly for 1 cycle (4 weeks) followed by every 2 weeks thereafter (qw/q2w) in combination with pomalidomide/dexamethasone (n = 44) was first used to determine the optimal dose/schedule for the phase III ICARIA-MM study. It was complemented by an E-R analysis from a second phase Ib study of patients who received isatuximab at doses from 3 to 10 mg/kg q2w or 10 or 20 mg/kg qw/q2w in combination with lenalidomide/dexamethasone (n = 52).
View Article and Find Full Text PDFThis analysis describes the pharmacokinetic/pharmacodynamic (PK/PD) modeling framework that supported selection of the isatuximab (anti-CD38 monoclonal antibody) dosing regimen alongside its early clinical development in patients with relapsed/refractory multiple myeloma (RRMM). The PK/PD mathematical model characterized the variations of patient serum M-protein concentrations, the primary marker of tumor burden in multiple myeloma (MM). Three separate PK/PD models were built sequentially as data became available from phase I clinical trials.
View Article and Find Full Text PDFPurpose: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycoprotein that has limited expression in normal adult tissues, but is overexpressed in carcinomas of the gastrointestinal tract, the genitourinary and respiratory systems, and breast cancer. As such, CEACAM5 is an attractive target for antibody-based therapies designed to selectively deliver cytotoxic drugs to certain epithelial tumors. Here, we describe preclinical data for a novel antibody-drug conjugate (ADC), SAR408701, which consists of an anti-CEACAM5 antibody (SAR408377) coupled to a maytansinoid agent DM4 via a cleavable linker.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
November 2020
Isatuximab, a monoclonal antibody (mAb) of immunoglobulin G (IgG) isotype, specifically targets the cluster of differentiation 38 antigen overexpressed in malignant plasma cells. Isatuximab is used to treat multiple myeloma (MM), characterized by the excessive production of abnormal "myeloma proteins" (M-proteins) that may interact with therapeutic IgG mAb on the neonatal Fc receptor (FcRn)-mediated recycling pathway. The clinical pharmacology profile of isatuximab was investigated by population pharmacokinetics (PKs) modeling in 476 patients with MM who received 1-20 mg/kg isatuximab either as single agent or in combination with pomalidomide-dexamethasone in 4 clinical trials.
View Article and Find Full Text PDFA Phase 2 dose-finding study evaluated isatuximab, an anti-CD38 monoclonal antibody, in relapsed/refractory multiple myeloma (RRMM; NCT01084252). Patients with ≥3 prior lines or refractory to both immunomodulatory drugs and proteasome inhibitors (dual refractory) were randomized to isatuximab 3 mg/kg every 2 weeks (Q2W), 10 mg/kg Q2W(2 cycles)/Q4W, or 10 mg/kg Q2W. A fourth arm evaluated 20 mg/kg QW(1 cycle)/Q2W.
View Article and Find Full Text PDFAflibercept targets vascular endothelial growth factor. The present study involved assessing the efficacy, safety and pharmacokinetics of aflibercept plus 5-fluorouracil/levofolinate/irinotecan (FOLFIRI) as a second-line treatment for metastatic colorectal cancer (mCRC) in Japanese patients. Aflibercept (4 mg/kg) plus FOLFIRI was administered every 2 weeks in 62 patients with mCRC until disease progression, unacceptable toxicity or patient withdrawal.
View Article and Find Full Text PDFThis work proposes a model-based approach to help select the phase 1 dosing regimen for the antibody-drug conjugate (ADC) SAR408701 leveraging the available data for 2 other ADCs of the same construct: SAR3419 and SAR566658. First, monkey and human pharmacokinetic (PK) data of SAR566658 and SAR3419 were used to establish the appropriate allometric approach to be applied to SAR408701 monkey PK data. Second, a population pharmacokinetics-pharmacodynamics (PK-PD) model was developed to describe tumor volume evolution following SAR408701 injection in mice.
View Article and Find Full Text PDF