Publications by authors named "Claire Barbier de La Serre"

Advanced glycation end products (AGEs), formed via the Maillard reaction (MR) during processing of foods, have been implicated in inflammatory and degenerative diseases in human beings. Cellular damage is primarily caused by AGE binding with the receptor for AGEs (RAGE) on cell membranes. An isoform of RAGE, soluble RAGE (sRAGE), acts as a decoy receptor binding circulating AGEs preventing cellular activation.

View Article and Find Full Text PDF

Background And Aims: The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced.

View Article and Find Full Text PDF

Ingestion of high-fat, high-calorie diets is associated with hyperphagia, increased body fat, and obesity. The mechanisms responsible are currently unclear; however, altered leptin signaling may be an important factor. Vagal afferent neurons (VAN) integrate signals from the gut in response to ingestion of nutrients and express leptin receptors.

View Article and Find Full Text PDF

The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered.

View Article and Find Full Text PDF

Consumption of diets high in fat and calories leads to hyperphagia and obesity, which is associated with chronic "low-grade" systemic inflammation. Ingestion of a high-fat diet alters the gut microbiota, pointing to a possible role in the development of obesity. The present study used Sprague-Dawley rats that, when fed a high-fat diet, exhibit either an obesity-prone (DIO-P) or obesity-resistant (DIO-R) phenotype, to determine whether changes in gut epithelial function and microbiota are diet or obese associated.

View Article and Find Full Text PDF

Background & Aims: Cholecystokinin (CCK) acts on vagal afferent neurons to inhibit food intake and gastric emptying; it also increases expression of the neuropeptide cocaine- and amphetamine-regulated transcript (CART), but the significance of this is unknown. We investigated the role of CARTp in vagal afferent neurons.

Methods: Release of CART peptide (CARTp) from cultured vagal afferent neurons was determined by enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats.

View Article and Find Full Text PDF