Magnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. In the presence of asymmetric exchange interactions, their chirality, which governs their dynamics, is generally considered as an intrinsic parameter set during the sample deposition. In this work, we experimentally demonstrate that a gate voltage can control this key parameter.
View Article and Find Full Text PDFMagnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse.
View Article and Find Full Text PDFElectric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films.
View Article and Find Full Text PDFNanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution.
View Article and Find Full Text PDFWe investigate the current-phase relation of S/F/S junctions near the crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions where this crossover is driven both by thickness and temperature. For a certain thickness a nonzero minimum of critical current is observed at the crossover temperature.
View Article and Find Full Text PDF