Publications by authors named "Claire Attwooll"

Background: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S.

View Article and Find Full Text PDF

In this study, we examine the telomeric functions of the mammalian Mre11 complex by using hypomorphic Mre11 and Nbs1 mutants (Mre11(ATLD1/ATLD1) and Nbs1(Delta)(B/)(DeltaB), respectively). No telomere shortening was observed in Mre11(ATLD1/ATLD1) cells after extensive passage through culture, and the rate of telomere shortening in telomerase-deficient (Tert(Delta)(/)(Delta)) Mre11(ATLD1/ATLD1) cells was the same as that in Tert(Delta)(/)(Delta) alone. Although telomeres from late-passage Mre11(ATLD1/ATLD1) Tert(Delta)(/)(Delta) cells were as short as those from Tert(Delta)(/)(Delta), the incidence of telomere fusions was reduced.

View Article and Find Full Text PDF

The advent of gene targeting has allowed the dissection of many essential cellular pathways, including those involved in cell cycle regulation, signal transduction, and development. However, it is becoming increasingly clear that the simple gene deletion strategy may not be sufficient for the modeling of many cancer syndromes. In this Prospect article, we will discuss the strengths and weaknesses of mouse models, how they have advanced from gene deletions to truncations, point mutations, and conditional mouse models in which expression or loss of the gene of interest is controlled either temporally or spatially.

View Article and Find Full Text PDF

Seven Fanconi anemia-associated proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL) form a nuclear Fanconi anemia core complex that activates the monoubiquitination of FANCD2, targeting FANCD2 to BRCA1-containing nuclear foci. Cells from individuals with Fanconi anemia of complementation groups D1 and J (FA-D1 and FA-J) have normal FANCD2 ubiquitination. Using genetic mapping, mutation identification and western-blot data, we identify the defective protein in FA-J cells as BRIP1 (also called BACH1), a DNA helicase that is a binding partner of the breast cancer tumor suppressor BRCA1.

View Article and Find Full Text PDF

The retinoblastoma gene, RB1, is one of the most frequently mutated genes in human cancer. Rb heterozygous mice develop pituitary tumors with 100% incidence, and the E2F transcription factors are required for this. To assess whether deregulated E2F activity is sufficient to induce pituitary tumors, we generated transgenic mice expressing an inducible E2F3 protein in the intermediate lobe of the pituitary gland.

View Article and Find Full Text PDF

The E2F transcription factors are key regulators of cell cycle progression and the E2F field has made rapid advances since its advent in 1986. Yet, while our understanding of the roles and functions of the E2F family has made enormous progress, with each discovery new questions arise. In this review, we summarise the most recent advances in the field and discuss the remaining key questions.

View Article and Find Full Text PDF

The transcriptional repressor E2F6 has been identified as a component of two distinct polycomb group protein (PcG)-containing complexes, suggesting a mechanism for the recruitment of repressive complexes to target sequences in DNA. Whereas one complex is involved in the repression of classic E2F target genes in G0, a role for E2F6 within the cell cycle has yet to be defined. We searched for novel E2F6-binding proteins using a yeast two-hybrid screen and identified the PcG protein, EPC1.

View Article and Find Full Text PDF

NPAT is an in vivo substrate of cyclin E-Cdk2 kinase and is thought to play a critical role in coordinated transcriptional activation of histone genes during the G(1)/S-phase transition and in S-phase entry in mammalian cells. Here we show that NPAT transcription is up-regulated at the G(1)/S-phase boundary in growth-stimulated cells and that the NPAT promoter responds to activation by E2F proteins. We demonstrate that endogenous E2F proteins interact with the promoter of the NPAT gene in vivo and that induced expression of E2F1 stimulates NPAT mRNA expression, supporting the idea that the expression of NPAT is regulated by E2F.

View Article and Find Full Text PDF

The majority of families with classic Li-Fraumeni Syndrome (LFS) and a significant proportion of Li-Fraumeni-like (LFL) families have a germline mutation in the TP53 tumor suppressor gene. However around 20% of LFS and 60% of LFL families have no identifiable genetic defect in the coding region or splice junctions of TP53, and the genetic basis for cancer susceptibility in these families remains largely uncharacterized. To determine whether promoter mutations could be responsible for the Li-Fraumeni phenotype, we sequenced the TP53 promoter in index cases from members of classic LFS and LFL families without detectable TP53 mutations.

View Article and Find Full Text PDF