The spherical representation usually utilized for the coarse-grained particles of soft matter systems is an assumption and pertinent studies have shown that both structural and dynamical properties can depend on anisotropic effects. On these grounds, we develop coarse-grained equations of motion which take into account explicitly the anisotropy of the beads. As a first step, this model incorporates only conservative terms.
View Article and Find Full Text PDFWe present a mesoscopic model for bitumen and bituminous mixtures. The model, which is based on dissipative particle dynamics, consists of different dynamical entities that represent the different characteristic time scales. Through the stress relaxation function, the mechanical properties of the model are investigated.
View Article and Find Full Text PDFWe apply the dissipative particle dynamics strategy proposed by Hijón et al. [Faraday Discuss. 144, 301-322 (2010)] and based on an exact derivation of the generalized Langevin equation to cis- and trans-1,4-polybutadiene.
View Article and Find Full Text PDFSystems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough to counterbalance the increase in volume due to the addition of water.
View Article and Find Full Text PDFWe discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered.
View Article and Find Full Text PDFJ Phys Chem B
November 2015
We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule, given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen.
View Article and Find Full Text PDFThe rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures.
View Article and Find Full Text PDFAsphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration.
View Article and Find Full Text PDFWe study chemical aging in "Cooee bitumen" using molecular dynamic simulations. This model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins → 1 asphaltene.
View Article and Find Full Text PDFWe propose a four-component united-atom molecular model of bitumen. The model includes realistic chemical constituents and introduces a coarse graining level that suppresses the highest frequency modes. Molecular dynamics simulations of the model are carried out using graphic-processor-units based software in time spans in order of microseconds, which enables the study of slow relaxation processes characterizing bitumen.
View Article and Find Full Text PDF